KITT PEAK NATIONAL OBSERVATORY
MEMORANDUM

TO Distribution Date _ October 1979

FROM __R. Stevens SUBJECT _Forth Primer - Update 3

v// Attached is Update 3 of the Forth Primer. This update is
a complete reprinting of this manual. Please discard any old
copies of the Primer that you may have.

The major changes to the Primer are:

- Correspondence with KPNO Forth, Versions 3.0
and later. This level of KPNO Forth conforms
(in general) to the 1978 Forth International
Standard;

- Description of the file system (Section 13.2).
This section corresponds to KPNO Forth, Versions
3.3 and later;

- Description of overlays (Section 13.3);

- Description of vocabularies (Section 13.4).

As usual, any comments or suggestions concerning any aspect
of the primer are welcome.

KITT PEAK NATIONAL OBSERVATORY *

Tucson, Arizona 85726

A FORTH PRI MER

W. Richard Stevens
October 1979

(Update 3)

*Kitt Peak National Observatory is operated by the Association of
Universities for Research in Astronomy, Inc., under contract with
the National Science Foundation,

,;;"/’;7 2
,rj/“
TABLE OF CONTENTS -y
X

Introduction « v v ¢ v ¢ v v« s s @« s e e e e e . . 11
Obtaining a copy of the current FORTH system . .2-1
Loading FORTH into the computer. « ¢ « « « ¢ + « o & .31
3.1 Running from disc. e e e e . . .3-1
3.2 Running from tape. . « . « « « « « « & « « & .3-2
3.3 Restarting from disc . . . « v e e .3-3
3.4 Saving your program mod|f|cat|ons .3-6
Executing FORTH utility words. . . « « « « « « + & -1
L.1 Terminal Interaction « ¢ « « ¢« « « « o . -1
4.2 Re-formatting the disc . . . « « v « ¢ « « « v & 4-3
4.3 Listing FORTH blocks . . A-4
Arithmetic Expressions5-1
5.1 The FORTH Stack. « v v v v ¢ ¢« ¢ o ¢ v o o o & o o « & 5-1
5.2 Infix/Polish Notation. . « « « « v ¢« ¢ « v & = « « « . .5-4
The FORTH Dictionary . .6-1
Data StructuUreS. « « « o o « o+ o o « o o o s s 2 s o o .7-1
7.1 Integers . . . e e e e e e e e e e e e e e e -1
7.2 Double-word Integers e e e e e e e e e e e e e e .7-6
7.3 Floating-point Numbers . . . e e e e e e e 71
7.4 Conversions between Data Structures C e e e e e e 71
7.5 Logical Values and Logical Expressions72
7.6 Additional Numeric Conversions . . . « « « o« « + & 772
7.7 Vectors. .7-2
Stack Operations . . . e e e e e e e e e e e e e e .8-1
8.1 Manipulation WOrds . . . e - L
8.2 Comparison Words . . « v « « v « o o o o « + o« » « .« .89

The Colon Definition .

.
O
I
—

10. Program Control

10.1 DO LOOPS . e e e e e e
10-2 BEGIN-END Loops. . . . e e
10-3 BEGIN-WHILE-REPEAT Loops . . .
10-4 | F-THEN-ELSE Statement Selectlon .
11. Block 1/0 .
12. Text Editor . .
12.1 Special Characters and Termlnology .
12.2 Command Descriptions .
12.3 Block Editor .
13. Program Structure . .
13.1 Block Oriented Programs
13.2 File System.
13.3 Overlays . .
13.4 Vocabularies .
14, Terminal 1/0. . .
14.1 Character Output .
14.2 Numeric Input.
14.3 Numeric Output .
15. Advanced Arithmetic . .
15.1 Numerical Functions. .
15.2 Mixed Precision Operators.
15.3 Arithmetic Range Errors.
15.4 Combined Words .
16. Real-Time 1/0 .
16.1 Interrupts .
16.2 CAMAC 1/0.
16.3 FORTH CAMAC Words.
16.4 FORTH Interrupt Words.
Appendices

A ASC!! Character Set . . .
B. FORTH Error Codes .

C Answers to Exercises. .

D FORTH Glossary.

OO W
1

. 10-1
. 10-1

10-7
10-9

. 10-10

111

. 12-1
. 12-1

12-2

. 12-13

13-1
13-1

: 13-11
. 13-18

13-22

. 1h-1
. 141

14-2
14-3

15-1
15-1
15-7

. 15-9

15-10

16-1
16-1

16-2

16~5
16-10

— el — —

INTRODUCTION

FORTH is a programming system whose main function is to simplify the program-
ming of minicomputers that are used for on-line data acquisition. This
primer is intended as an introduction to FORTH. The only assumption made

is that the reader has some experience and acquaintance with computers in
general (probably through the FORTRAN language) and is capable of pursuing

a self study course.

The organization of this primer is to present the features of FORTH in an
orderly and stepwise fashion. This primer should be read in the order presented

as each chapter builds on the points covered in the previous chapter.

Computer Science is a field in which "hands on'' experience is a requisite;
that is, one ban read a plethora of programming manuals and obtain some
information, however one must write and debug some programs using a given
programming tool in order to really understand and appreciate the tool being
used. FORTH is a classical example of this principle and a perusal of this
primer without trying to work or understand the examples and exercises will
yield very little knowledge of FORTH. This requisite for 'hands on'
experience is especially true with FORTH since it is an interactive, terminal-
oriented, minicomputer system quite different from the batch-oriented FORTRAN

systems you are probably familiar with.

This manual is intended to be used as a self study tool and therefore
exercises to be worked, along with complete solutions are provided. It
must be clearly stated that the provided solutions are not to be considered
the only solution to an exercise. Programming is an art and therefore
there will usually exist more than one solution to a given problem. The
analysis of all possible solutions, in order to determine the ''best"
solution, is not a clearly defined task, mainly due to the variable
criteria available to specify which solution is ''best'. The reader should
not be disturbed if he arrives at a solution that is not identical with the
provided solution but should try to understand the provided solution (and

possibly compare the two solutions to determine which, if either, is ''better').

Feb. 1977 1-1

As with any self study course, referral to the solution for an exercise,
before making an honest attempt to solve the exercise on your own, defeats

the purpose of this primer.

Although an occasional reference is made to the version of FORTH used at
Kitt Peak (for its Varian 620 minicomputers) this primer is largely
independent of any specific FORTH implementation. In fact, until the final
chapter no mention is made of the computer being binary or decimal and

no specification of the number of bits in a computer word is needed.

This manual is a primer and as such does not describe FORTH in its entirety.
All of the nitty gritty details of the implementation of FORTH are ignored,
instead this primer tries to give the reader an appreciation of what FORTH
is and how to use it to solve a large class of problems on a minicomputer.
The most notable exclusion from this primer is a description of machine
language programming in FORTH, this topic being so dependent on the specific
computer being used. This topic along with an advanced description of the
implementation of FORTH is covered in ""FORTH - Systems Reference Manual'

which is available from the author at Kitt Peak National Observatory, Tucson,
Arizona 85726.

Comments and suggestions concerning any portion of this manual are solicited.
Please try to be as specific as possible (reference the page number and

revision level). Direct all comments to the author.

"Explain all that,' said the Mock Turtle.
'"No, no, the adventures first," said the gryphon in an

impatient tone: '"Explanations take such a dreadful time."

LEWIS CARROLL

Alice's Adventures in Wonderland

i-2 Feb. 1977

NOTE: The version of FORTH used throughout this manual is Kitt Peak FORTH,
Versions 3.0 and later, which runs on a Varian 620 minicomputer. This version
of FORTH corresponds to the basic system defined by the FORTH International

Standards Team along with many Kitt Peak extensions.

Oct. 1979 ' 1-3

OBTAINING A COPY OF THE CURRENT FORTH SYSTEM

The first thing one must do is obtain a copy of the current version of the

KPNO Varian FORTH system on a magnetic tape. This tape may then be taken

to any of the KPNO Varian systems, loaded into the system and executed.

The current version of FORTH will always reside on the Kitt Peak CDC 6400 and

the following job will copy the system onto your magnetic tape (a 600 foot

tape is sufficient).

jobname ,account# ,MT1.

VSN(TAPE 9= tape#)

REQUEST(TAPE9,HI,S,RING)

ATTACH(TAPES,DOFORTH,CY=5)

ATTACH(DOFORTH,DOFORTH)

DOFORTH,

end-of-record card

end-of~record card

jobname and account# are parameters required

by the 6400 SCOPE operating system.

tape# is the volume serial number or volume

serial name on the magnetic tape.

causes the mag tape to be mounted on a tape
drive with a write ring and directs the

system to write the tape at 556 bpi.

attaches the current version of FORTH to

tape5.

attaches the public file DOFORTH which is the
FORTH utility program used to manipulate
FORTH tapes.

execute DOFORTH.
terminates the SCOPE commands.

terminates the S$INTYPE cards.

$OUTTYPE TAPE=.TRUE., IBLK1=1, IBLK2=199 $

t\

end-of-file card

col. 2 of card

Feb. 1977

terminates the SOUTTYPE cards and

terminates the program,

2-1

Upon successful execution of this job the user should remove the write

ring from the magnetic tape.

The contents of the tape (which will

automatically be printed by the above job) are blocks 1-199 of the
current FORTH system (blocks 1-7 are not printed).

If the user has a FORTH tape that he wants listed on the CDC 6400 (Section

3.4 describes the procedure for creating a FORTH tape on the minicomputer)

the following job may be used:

jobname,account#,MT1.

VSN(TAPES8= tape#)

REQUEST(TAPE8,HI,S)

ATTACH(DOFORTH,DOFORTH)

DOFORTH.

2-2

jobname and account# are parameters
required by the 6400 SCOPE operating

system.

tapef is the volume serial number or
volume serial name on the magnetic

tape to be listed.

causes the mag tape to be mounted on
a tape drive without a write ring
and directs the system to read the
tape at 556 bpi.

attaches the public file DOFORTH which
is the FORTH utility program used to
manipulate FORTH tapes.

execute DOFORTH.

Feb.

1977

end-of-record card terminates the SCOPE commands.
$INTYPE TAPE=,TRUE. $

column 2 of card
end-of-record card terminates the $INTYPE commands.
$0UTTYPE TAPE=.FALSE. $

t- column 2 of card

end-of~file card terminates the SOUTTYPE commands

and terminates the program.

This job will read in blocks 1-511 from the user's FORTH tape and then

produce a line printer listing of these blocks.

Feb. 1977

2-3

LOADING FORTH INTO THE COMPUTER

Now that you have a copy of FORTH on tape the steps required to load the
tape into a computer and then execute the FORTH system must be described.
FORTH is somewhat unique in that the system will run from either a disc

or a tape and each process is described separately below.

RUNNING FROM DISC

1) Power on the computer and all associated peripherals.

2) Mount your FORTH tape on the magnetic tape drive and check that the
switches on the magnetic tape controller (located immediately above the

tape drive) are set as follows:

Density HI/LOW -> LOW
Mode REMOTE/MANUAL -> MANUAL
Parity EVEN/ODD -> 0DD

Position the tape to the load point (push the load button twice) then place
the drive on-line. At this point the LOAD and ONLINE buttons should be
lighted. '

3) Place the disc STOP/READY switch to the READY position and wait approximately
L0 seconds for the READY light to come on.

L) Set the Sense Switches on the CPU as follows:

Sense Switch 1 ->DOWN (load from tape)
Sense Switch 2 =-> UP (see note below)

Sense Switch 3 =-> UP (run from disc)

5) Press the following switches on the CPU:

STEP/RUN -> STEP
RESET -> Press down
STEP/RUN -> RUN

BOOTSTRAP -> Press down
Note: Sense Switch 2 is looked at only if you aré loading from tape onto disc.
In this case, if Sense Switch 2 is DOWN, then the region of disc that will be
copied from the tape is zeroed before the tape is copied onto disc. |f Sense
Switch 2 is up, the disc region is not zeroed. If yoﬁ plan to maké modifica-
tions to some program blocks and then save a copy of the néw program (Section

3.4), Sense Switch 2 should be DOWN.
Oct. 1979 3-1

At this point the tape will be copied onto the disc and at completion the
tape will automatically rewind. The RUN light and the OVFL light on the
CPU should be lighted.

In order to load the basic FORTH system into core from the disc press
any key on the terminal (such as the RETURN key) and FORTH will respond
by ringing the terminal bell. Basic FORTH will automatically

be loaded into core and the following message will be output to

the terminal:

FORTH x.y date 620/F AND DISK
comment
(x.y denotes the version of the FORTH system, date specifies the creation
date of the FORTH system and comment is an operator specified comment that
describes the contents of the tape (refer to Section 3.4)).
3.2 RUNNING FROM TAPE

1) Power on the computer and all associated peripherals.

2) Mount your FORTH tape on the magnetic tape drive and check that the switches
on the magnetic tape controller (located immediately above the tape

drive) are set as follows:

Density HI/LOW -> LOW
Mode REMOTE/MANUAL -> MANUAL
Parity EVEN/ODD -> 0DD

Position the tape to the load point (push the load button twice) then place
the drive on~line. At this point the LOAD and ONLINE buttons should be
lighted.

3) Set the sense switches on the CPU as follows;

Sense Switch 1 ->DOWN (load from tape)
Sense Switch 2 ->UP
Sense Switch 3 ->DOWN (run from tape)

3-2 Qet. 1979

3.3

L) Press the following switches on the CPU:

STEP/RUN =-> STEP
RESET -> press down
STEP/RUN => RUN
BOOTSTRAP -> press down

At this point the tape will briefly (2seconds) move and then the RUN light
and the OVFL light on the CPU will be lighted.

In order to load the basic FORTH system into core from the tape press any
key on the terminal (such as the RETURN key) and FORTH will respond by ringing
the terminal bell. Basic FORTH will automatically be loaded into core

and the following message will be output to the terminal.

FORTH x.y date 620/F AND TAPE
eomment
(x.y denotes the version of the FORTH system, date specifies the creation

date of the FORTH system ‘and comment is an operator specified comment that

describes the contents of the tape (refer to Section 3.4)).
RESTARTING FROM DISC

The two procedures described above are referred to as '‘cold-start' procedures
since they make no assumptions concerning the contents of the disc or core,
instead basic FORTH is reloaded from magnetic tape. Obviously this procedure
takes some time (depending on how many programs and/or data are contained on
the tape) therefore if we are certain that the FORTH system contained on

the disc is usable (i.e., the disc has not been erased or overwritten since
FORTH was last loaded from tape onto disc) we may save time by loading FORTH
from the disc and not reading in the magnetic tape version. This procedure
is referred to as a "'warm-start' and may be performed whenever the user

has clobbered the FORTH system in core (but not the system on disc):

Oct. 1979 3-3

3-4

1) Set the Sense Switches on the CPU as follows:
Sense Switch 1 ---> UP (load from disc)
Sense Switch 2 ---> UP

Sense Switch 3 ~---> UP (run from disc)

2) Press the following switches on the CPU:

STEP/RUN ---> STEP
RESET ---> press down
STEP/RUN ---> RUN
BOOTS TRAP ---> press down

The RUN light and the OVFL light on the CPU will be lighted. To load the
basic FORTH system into core from the disc press any key on the terminal
(such as the RETURN key) and FORTH will respond by ringing the terminal
bell. Basic FORTH will automatically be loaded into core.

It should be obvious that this '‘warm-start'' procedure is applicable only
if FORTH was originally loaded from tape onto the disc. If you are
running from tape and wish to reload FORTH you must go through the entire

tape load procedure again (Section 3.2).

One additional 'wam-start' procedure is available, namely keying in the
word ZAP terminated by a carriage-return. FORTH will respond by
ringing the terminal bell and Basic FORTH will automatically be loaded
into core.

This procedure has the advantage that the entire reloading process is
done through the terminal and you do not have to set any switches on the
CPU - an obvious benefit if the CPU is separated from the terminal by
some distance. The disadvantage of this procedure is that FORTH must be
responding to terminal input in order for you to enter and execute the
word ZAP. If you have somehow destroyed the FORTH system in core to
the point that it is not accepting terminal input then you have to resort

to either a disc '"warm-start' or a ''cold-start''.

Oct. 1979

291ndwo) 9yl o1ul H1Wo4 buipeo] - '€ @|qel

‘HLY¥04 >!seq peo|
01 A9 (eulwt9] Aue ss31d

umop ssaad <« dvdls100d
NI <« NNY/d3lLs
umop ssadd < 1353y
dils <« NNY/daLs

dn - € Yo3Iimg asuag
dn - T Yo3img osuas
dN - 1 Yo3img 3sues

<juswd inbe
493ndwod | e UO-JaMOd

*HLY0d d!seq peo|
01 A9y |euiwtol Aue ssadd

‘ul pead
adel uo spJtodod M2] 1SJl4

umop ssadd <« dv¥151008
NNy < NNY/d3aLs

umop ssadd <« 13S3d
daLs <« NNY/d3ls

NMOQ - £ Y23 IMg @sudg
dN - T Yd231Mg suds
NMOQ - | Y23IM§ osues

‘ade] we1sSAS JUNOY

*juswd inba
491ndwod | |e uo-.3aMod

"HLY04 d!seq peo| o3
A [eUjWIDY Aué Ssody

*ul spesad adel sdljuj

umop ssadd « dvy4l$1009
NNY <« NNY/d3aLs
umop ssadd < 13S3¥
d3lS <« NM/43LS

dn - € Yo11mMg osuss
dN - T Yo1lMg asuag
NMOd - | Yd3IMg 8suss

‘ade] walsAs junoy

*juswdinbs
493ndwod | |e uO-43MOd

Js1Q woa} uny
2s1@ woual peoq

adey wodj uny
adej woui] peor

5s1(Q woJd} uny
ade| wou4j peoT

3-5

1979

Oct.

3.4 SAVING YOUR PROGRAM MODIF1CATIONS

If, after loading FORTH onto the disc, you make modifications and
changes to your program(s) you will want to save a copy of these
changes on magnetic tape (since the next person who uses the disc
may erase or overwrite your program blocks). The procedure to do
this is as follows:

1) Mount a scratch tape on the tape drive with a write ring.

2) Execute the word SAVEDISK and the following will be output

to the terminal:

ENTER NEW COMMENT OR RETURN, TO SAVE BLOCKS 1-511
OLD COMMENT: (old comment)

0ld comment is the comment line that was printed after loading

basic FORTH. This comment serves no

purpose except to provide the operator with a message identifying

the FORTH system and program(s) that were loaded. Each time the

disk is saved the operator has the option of changing this comment

and if you so desire you may key in a new comment at this point

(up to 63 characters, terminated by a carriage-return). If you

wish to retain the old comment then simply enter a carriage-return.
3) After you have either keyed in a new comment or entered a carriage

return one of the following messages will be output to the terminal:

TAPE ON LINE. *¥ NO MAP READ ¥** or
TAPE DOES NOT RESPOND.

(1f the second message is printed then the tape drive is not on

line.)

3_6 Oct.]979

Feb.

L)

1977

Blocks 1 through 511 will be copied from disc onto tape and then
the tape will be rewound. The following message will be output

to the terminal:
¥%k Bl OCKS 1-511 SAVED ***

This tape may now be taken to any of the mini-computer systems
and loaded into core using the methods described in Sections 3.1
and 3.2. Additionally this tape may be taken to the CDC 6400
and listed on the line printer using the method described in

Chapter 2.

3-8

EXERCISES - CHAPTER 3

1)

2)

Perform a cold-start and run FORTH from disc. How long does the
procedure take? Now that FORTH resides on disc perform a warm-start

from the disc. Perform a zAP.

Perform a cold-start and run FORTH from tape. How long does the

procedure take?

Oct. 1979

b1

EXECUTING FORTH UTILITY WORDS

After having learned the procedures required to load FORTH into the
computer, the purpose of this chapter is to have you execute and use
some system defined routines thereby gaining some feeling for the
operator-machine interaction provided by an interactive system such
as FORTH.

TERMINAL INTERACTION

The first concept to understand is the entering and execution of words
through the terminal. You are already familiar with this from executing

the word zaP from the previous chapter. The general rules are:

- FORTH does not interpret a line of operator insert until

the operator terminates the line by entering a carriage-return.

- The operator may delete the previous character by entering

a rubout. FORTH responds by backspacing one character.

- The operator may delete an entire line by entering a Control-U.

FORTH responds by printing '\'.

After entering a carriage~return to terminate a line of input, FORTH
will go through the line and execute every word in the input line.

The definition of a FORTH word is very simple:

A FORTH word is a sequence of up to 64 characters, preceded
by a space and terminated by a space. The sequence of
characters may contain any character in the ASC11 character~set

(Appendix A) except carriage-return, rubout, Control-U or space.

For example, entering the line
1 HELLO? RESIDENT# ZAP-ZAP
(terminated by a carriage-return) will cause FORTH to execute the four

words

Oct. 1979 b4-1

1

HELLO?
RESIDENT#
ZAP-ZAP

(The actual execution of each word will be discussed later, presently
we are just interested in the entering of words in an input line
through the terminal.) The words are executed in the order in which

they are entered.

If all goes well and FORTH successfully executes each word in the input
string then FORTH responds with a carriage-return,

line-feed (i.e. - moves to the beginning of the next line), outputs

an asterisk and waits for the operator to enter another line of

input. This loop (enter a line of input, execute each word in the

input line, ...) is the heart of the FORTH system.

if FORTH detects an error of any sort while executing a word in the
input string, FORTH will output the

name of the word it was executing when the error was detected,
followed by a question-mark and a single character identifying the
type of error. (A listing of the single character error codes and
a description of each is found in Appendix B). For example, if the
operator entered the four words as shown above and for some reason
a Q error occurred while executing the word HELLO? then FORTH
will output

HELLO 7Q

Similarly, if a U error occurred while executing the word ZAP-ZAP
FORTH will respond with

ZAP=ZAP 7V

Oct. 1979

4.2

RE-FORMATTING THE DISC

This exercise is a good example of an interactive program. For reasons
that are not important here, it occasionally becomes necessary to
re-format the disc (this involves the updating of certain timing tracks
used by the hardware to access the data on the disc). The disc consists
of two platters, a removable platter and a fixed platter, either of

which may be re-formatted.

After having loaded basic FORTH into core execute
UTIL FORMATTER

and a list of instructions should be output on the terminal. Execute
R—~CHECK

and note any format errors on the removable platters (hopefully there

should not be any). Similarly execute
F-CHECK
to check the fixed platter. Then re-format both platters by executing
R—-FMT
and subsequently
F-FMT
Both platters may be zero'ed (i.e. - erased) by executing
R-ZERO F-ZERO

Note that this final step (zero'ing the entire disc) erases the FORTH
system stored on the disc, necessitating a cold-start from tape the

next time you wish to re-load the system.

After completing this little exercise, execute the word

DISCARD

Oct. 1979 4-3

4.3

4=k

which effectively throws away the last program loaded (the disc

re-formatter) so that you may re-use the core that it took up.

LISTING FORTH BLOCKS

As will be discussed later, FORTH requires the user to break up his
programs and data into chunks of storage referred to as ''blocks''.
Each block is identified by a unique number between 0-4895. One may
list a FORTH block to see what its contents are: to list block 80

on the terminal, execute

80 LIST

This may be done for any block.

If the FORTH system that you are using has a Centronix line printer attached

to it. then execute
UTIL PRINTERS CEN

180 LOAD

80 86 BLOCKPRINT

to list blocks 80 through 86 on the line printer.

Oct. 1979

Feb.

ARITHMETIC EXPRESS IONS

THE FORTH STACK

One of the most unique features of FORTH is its use of a pushdown stack
(referred to simply as the stack) to hold operands and parameters.

Some examples are the easiest way to describe the use of the stack:
Consider the input line
4 3 + 5 -

Recall that FORTH will execute each word in the input string, one word
at a time, from left to right (refer to Section 4.1). The following

actions will take place as FORTH executes each of the six words:

WORD FROM CONTENTS OF
INPUT ACTION STACK
4 FORTH interprets this word as a number
and pushes its value onto the stack L
----- >
3 FORTH interprets this word as a 3
number and pushes its value onto
the stack ~ ===-- > b
+ This word is the arithmetic '‘addition"
operator - it expects two numbers to

be in the top two positions on the

stack and these two numbers are added

together. The two operands are then
replaced on the stack by the result 7
----- >
5 FORTH interprests this word as a number
and pushes its value onto the stack 5
————— > 7

1977 5-1

WORD FROM ACTION CONTENTS OF

INPUT STACK

- This word is the arithmetic ''subtraction'
operator - it expects two numbers to be
in the top two positions on the stack and
the number on top is subtracted from the

number below. The two operands are then

replaced on the stack by the result

2
----- >
. This word simply removes the top number
from the stack and prints the number
on the terminal ====- > stack empty

Two terms were introduced in the above example: push and pop. To push
a number onto the stack is to place the number at the top of the stack.

To pop a number from the stack is to remove the top number from the stack.

The general rules of FORTH's stack manipulation are:

1) Any number to be placed on the stack must be pushed onto the top
position on the stack. Any number to be removed from the stack

must reside at the top of the stack.

2) Arithmetic operators expect their operands to be in the top positions
of the stack. After completion of the arithmetic operation the

operands are popped from the stack and the result is pushed onto

the stack.

3) General words that operate on numbers residing on the stack (such as
the word . in the above example to print the top number on the

stack) remove from the stack the number operated on. This means,

Feb. 1977

for example, that the number printed is removed from the stack

(as occurred in the above example).

It should be obvious that the size of the stack is dynamic, that is, it

changes continually. One of the easiest ways to understand what operation

a sequence of numbers and operators performs is to keep track of the
contents of the stack. For example, the result of the input line
6 4 * 5 3 * -

is seen to be 9, from the following stack diagrams:

3
4 5 5
empty 6 6 24 24 24
6 4 * 5 3
15
24 9 empty
* - .

Feb. 1977 5-3

5.2

5-4

INFIX/POLISH NOTATION

The standard representation of a mathematical expression that one is
accustomed to (from programming languages such as Fortran, Algol, etc.)
is referred to as infix notation. Infix notation requires that an
operator be preceded and followed by the two operands that it is to
process (assume we are dealing only with binary operators such as

+, -, * and /). One limitation of infix notation is that one must
specify a heirarchy of precedence among the operators in order to

unambiguously handle expressions such as:
2 + 3 % 4

Does this denote '"2 plus the product of 3 and 4" or "4 times the sum of
2 plus 3'"? (Fortran would use the first interpretation). One can
further complicate the translator of these mathematical expressions by
introducing parentheses to explicitly denote the desired ordering of

an expression. One could then write the above example as either

2 + (3 % L) =---> 14
(2 + 3) * 4 -==> 20

depending on the desired meaning.

A completely unambiguous representation of the above example may be

written in Polish-postfix notation (also referred to as parentheses-free

notation):
2 3 + b4

Here the operators follow the operand (hence the adjective ''postfix")
and the expression may be easily evaluated from left-to-right with the
aid of FORTH's stack as follows:

Feb. 1977

WORD

ACTION REQUIRED

CONTENTS OF STACK

2 number, push it onto the stack. 2
3
3 number, push it onto the stack.
2
operator, take two numbers on
top of stack, add them together,
+ delete the top two numbers on 5
stack and replace with the
result.
A
b number, push it onto the stack.
5
operator, take two numbers on
top of stack, multiply them
together, delete the top two
% 20
numbers on stack and replace
with result,
Feb. 1977 5-5

For completeness it should be noted in passing that one may find references

to Polish-prefix notation. In this case the operators precede the

operands and the notation is then evaluated from right-to-left. Polish-
prefix and Polish-postfix are basically identical and it is usually a
matter of preference if the expression is to be evaluated left-to-right
or right-to-left, however Polish-postfix is the more prevalent. The

above example in Polish-prefix would be
* 5 + 2 3

For the trivia minded it is mentioned that these notations were originally

developed by the Polish mathematician Lukasiewicz.

The main advantage of Polish notation over infix notation is the
unambiguity in the representation of an expression. The conversion of
an expression from infix to Polish (as done, for example, by a Fortran
compiler) requires some additional processing. The Polish-postfix
notation employed by FORTH transfers this conversion process from the
FORTH system to the user. Another reason for the use of Polish notation
in FORTH is that the stack (which is basic to all FORTH operations) is a

natural way to interpret a Polish expression,

Note that the non-commutative operators (subtraction and division) are
evaluated in a manner such that the first number (the one preceding the
operator) is the second number on the stack and the second number (the
one following the operator) is the top number on the stack. This allows
one to write the expression from left-to-right in the natural manner.
For example: 5 2 - denotes (5-2)

9 4 / denotes (9/4)

Feb. 1977

Feb.

EXERCISES - CHAPTER 5

1)

2)

1977

Evaluate the following expression at a FORTH terminal and print the
result using the . word (this use of a FORTH terminal could be

referred to as the desk-calculator mode):
1+ 2%(3 + bx(5 + 6%(7)))

Diagram the contents of the stack after each word is executed.

Evaluate the following expression at a FORTH terminal and print

the result:

Diagram the contents of the stack after each word is executed.

THE FORTH DICTIONARY

Whenever you define a word in FORTH, regardless of the purpose of the
word (whether the word is a variable that contains integer values,
whether the word is a sequence of instructions to execute, etc.) the

word is entered into the dictionary. Loading a program into core simply
consists of entering all the words defined in the program (to perform
whatever functions the program is to perform) into the dictionary. The
loading of basic FORTH into core (Chapter 3)

is simply entering the words provided by basic FORTH into the dictionary.

Every word in the dictionary is identified by the first three characters
of the word along with the count of the total number of characters in

the word. Consider the following exampleé:

WORD FIRST THREE CHARACTERS LENGTH
THETA1 THE 6
X X 1
+ + 1
#Z # Z 2
THETA2 THE 6
1SUM 1sv L
25LM 2s U L

Note that the words THETA1 and THETA2 have the same count and first
three characters - this means these two words are indistinguishable in
the dictionary. FORTH does not consider this form of redefinition an
error and in fact won't even tell you about it. To avoid redefinltions
of this sort you should make your variable names unique in the first
three character positions (note that 1suM and 2suM will be
distinguishabie in the dictionary since the first three characters of

both words are different).

Oct. 1979 | 6-1

6-2

There is no fixed size for an entry in the dictionary, however each
entry does require a minimum of 5 words. In order for FORTH to be able
to find its way through the dictionary, a dictionary chain is built
with each entry pointing to the previous entry. Assume that basic FORTH
has been loaded into core and the user then enters each word in the
above example into the dictionary. After entering the word THETA1

the dictionary would appear as:

- dictionary entry
dictionary pointer for THETA1l
("1ink'") pointing

from the entry for

—~

THETA1 to the . dictionary entries
previous entry o basic comprising basic
in the dictionary. FORTH < FORTH

Similarly, if the words are entered in the sequence shown we will

obtain a dictionary structure of the form:

Feb. 1977

Start of dictionary

Feb.

1977

!
(
(
%
<

<¥ basic <&

FORTH

dictionary

dictionary

dictionary

dietionary

dictionary

dictionary

dictionary

entry

entry

entry

entry

entry

entry

entry

for

for

for

for

for

for

for

2SUM

1SUM

THETAZ

#Z

X

THETAL

dictionary entries comprising
basic FORTH

6-4

Note that in this discussion of the dictionary we do not care what
function each word: performs or how the word was entered into the
dictionary (whether it is a variable, a sequence of instructions,
etc.) but simply in the structure of the dictionary. It is very

important to note that each word is identified in the dictionary

simply by its first three characters and count. When the dictionary

is being searched for a specific word (say for example that you enter

the word THETAS on the terminal and FORTH must then search the
dictionary to locate the entry for THETAS in order for the word
to be executed) the search starts with the last word entered and
proceeds down the dictionary chain. When searching for THETAS,
FORTH starts with the entry for 2suM, then proceeds to the entry
for 1SUM, then proceeds to the entry for THETA2 and this entry
is a match since the first three characters and count are identical
with the first three characters and count of THETAS. Hopefully
this is what the user wanted! It should be obvious that after
THETA2 is entered into the dictionary the entry for THETAL is

inaccessible.

Feb.

1977

EXERCISES - CHAPTER 6

1) Assume that the words below are entered into the dictionary in

the following order:

Y +X
X+Y
XANG
X+Y2
SINX
YANG
SINY
SINZ
XANT
X+Y/2Z

a) Which entry is executed if SINX is entered?
b) Which entry is executed if X+Y is entered?
c) Which entry is executed if XANT s entered?
d) Which entry is executed if XANG is entered?
e) Which entry is executed if SINS s entered?
f) Which entry is executed if Y+XX is entered?

Feb. 1977

7.1

DATA STRUCTURES

All of the examples in the previous chapters have dealt with numbers
(not variables) and only with integer values. This chapter describes
the facilities provided to define and use variables along with the

different data structures provided by FORTH.

INTEGERS

An integer in Varian FORTH must be in the range
-32,768 < integer < 32,767

and occupies a single computer word. Integers are also referred to as
single-word integers' and any use of the unqualified term "integer"

implies a single-word integer.

There are two declarations that are available to declare either an

integer variable or an integer constant:

<initial-value> VARIABLE <-hame>

<initial-value> CONSTANT <name>

Using either of the above declarations causes a new dictionary entry to
be created and the entry is identified by the first three characters and
count of <name>. The difference in the above two declarations comes
when the word (identified by <name>) is executed: when a word defined
as a CONSTANT is executed the value of the constant is pushed onte the
stack; when a word defined as @ VARIABLE is executed the address of
the value of the integer is pushed onto the stack. Once the address of
the value of an integer is on the stack the value may be pushed onto the
stack or a new value may be stored by using the load operator (the
at-sign @) or the store operator (the exclamation-point, !). As

confusing as this appears some examples should hopefully make it clear:

Oct. 1979 7-1

5 CONSTANT X
180 CONSTANT REV

Executing the word X pushes the number 5 onto the stack. Similarly,

executing the word REV pushes the number 180 onto the stack.

0 VARIABLE ZERD
-2 VARIABLE DELTAX

Executing the word ZERO pushes the address of the integer's value onto
the stack and if the word @ is then executed the number O is pushed

onto the stack (replacing the address). That is

ZERO @ pushes 0 onto the stack,
DELTAX @ pushes -2 onto the stack.

In order to change the value of ZERO to -1 the sequence:
-1 ZERD ! stores -1 as the value of zERO.
Similarly to change the value of DELTAX to +2:
+2 DELTAX ' stores +2 as the value of DELTAX.
To store a new value in a word defined as a CONSTANT the sequence
4 ' REV .' stores 4 as the value of REV.
Similarly,
-99 ' X ! stores -99 as the value of X.

Subsequent execution of the word REV would push the number 4 onto the

stack and similarly executing X would push -99 onto the stack.

7-2 Oct. 1979

Thus we have two methods to define a word that is to contain an integer
value and for each method the integer value may be pushed onto the stack

or a new value may be stored as its value. This may be summarized as:

to push current to store top of

value onto stack stack as new value
CONSTANT <name> ' <pame>
VARIABLE <name> @ <pname>

These two fairly similar definitions may seem somewhat superfluous since
each can perform the same function, namely pushing the value of an
integer variable onto the stack and storing the top number on the stack
as the variable's new value. The usefulness of each will become more
apparent when colon definitions are introduced, however you can still
note the fact that if the value of an integer variable will be referenced
(i.e. - its value pushed onto the stack) many more times than a new value
is to be stored in the variable, then it requires fewer words to push the
value onto the stack for a CONSTANT than for a VARIABLE., This is so
because to push the value of a CONSTANT onto the stack you simply
execute the word itself. To push the value of a VARIABLE onto the

stack you must execute both the word and then the load operator, a.

It is worthwhile now to consider the interaction of the stack in
executing a sequence of loads and stores. Consider the following four

lines of input:

VARIABLE X
CONSTANT Y

1
8
X a Y + ' Yy
Y

.

Oct. 1979 7-3

et ACTION 0F STACK
1 FORTH interprets this word as a number and pushes
its value onto the stack ~ ===-- > 1
VARIABLE BORTH looks this word up in the dictionary and
then executes the word. When this word is
executed it will take the next word of input (X)
and enter it into the dictionary. The top number
on the stack (1) is used as the initial value for
the dictionary entry for x. After popping the 1
from the stack, the stack will be empty =---- > empty
8 FORTH interprets this word as a number and pushes
its value onto the stack ~ ===-- > 8
CONSTANT FORTH looks this word up in the dictionary and
then executes the word. When this word is
executed it will take the next word of input
(Y) and enter it into the dictionary. The
top number on the stack (8) is used as the
initial value for the dictionary entry for Y.
After popping the 8 from the stack, the stack
will be empty ===-=- > empty
X FORTH looks this word up in the dictionary and
then executes the word. When this word is
executed, since it was defined as a VARIABLE,
the address of the value of X is pushed onto address of
the stack . S value of X
7-14 Oct. 1979

WORD FROM

INPUT

ACTION

CONTENTS
OF STACK

]

Feb.

1977

FORTH looks this word up in the dictionary and then
executes the word. When this word is executed it
takes the the top value on the stack (which must be
the address of a variable's value) and uses this
address to push onto the stack the current value

of the variable =m=== >

FORTH looks this word up in the dictionary and then
executes the word. When this word is executed,
since it was defined as a CONSTANT, the value

of the variable is pushed onto the stack ----- >

FORTH looks this word up in the dictionary and then
executes the word. When this word is executed it
will add together the top two numbers on the stack

and then replace these two numbers with their sum -->

FORTH looks this word up in the dictionary and then
executes the word. When this word is executed it
will take the next word of input (Y) and look
this new word up in the dictionary. The address

of the value of this new word is then pushed onto

the stack T ==== >

FORTH looks this word up in the dictionary and then
executes the word. When this word is executed it
expects an address of a variables value to be on top
of the stack and a number to be below on the stack.
The value of the variable is set to the number and
then both the address and the number are popped

from the stack — —==== >

address of
value of Y

9

empty

7-5

WORD FROM CONTENTS
INPUT ACTION OF STACK

Y FORTH looks this word up in the dictionary and
then executes the word. When this word is

executed, since it was defined as a CONSTANT ,

the value of the variable is pushed onto the

stack ===== > 9
. FORTH looks this word up in the dictionary and then
executes the word. When this word is executed it
prints the top number on the stack and then pops
the number from the stack ~ -===- > empty

The concepts presented in this section are fundamental to understanding
the remainder of the chapter and the reader is advised to work the

first two exercises at the end of the chapter before preceding on.

7.2 DOUBLE-WORD INTEGERS

There are occasions when the single-word integer (described in the
previous section) does not contain enough precision for a certain
application. In these cases a double-word integer may be used.

In Varian FORTH the range is
-1,073,741,824 < double-word integer < 1,073,741,823

and each double-word integer occupies two consecutive words of memory

and will occupy two words on the stack.

There are two words that are available to declare either a double-word

integer variable or a double-word integer constant:

<initial-value> 2VARIABLE <name>
<initial-value> 2CONSTANT <name>

7._6 Oct. 1979

Using either of the above declarations causes a new dictionary entry to
be created and the entry is identified by the first three characters and
count of <name>. The difference in the above declarations comes when
the word (identified by <name>) is executed - when a word defined as a
2CONSTANT is executed the 2-word value of the double-word constant is
pushed onto the top two words of the stack; when a word defined as a
2VARIABLE is executed the address of the value of the

double-word integer is pushed onto the stack. Once the address of the
value of a double-word integer is on the stack the 2-word value may be
pushed onto the top two words of the stack by using the double-word

load operator (Da). Similarly the double-word store operator (D=)

may be used to store a new 2-word value in a double-word integer.

Before giving examples of the above declarations it must be noted that
a number must be appended by a comma with no numbers appearing-
to the right of the comma if the number is to be interpreted by

FORTH as a double-word integer value.

For example, the sequence

04
25 ,
100000,

correctly enters three double-word integers whose values are 0, 25 and

100,000. The following is an error

DPREC
10,0

Oct. 1979 7-7

7-8

Since the digit zero appears to the right of the comma, the
number is not interpreted as 10 but rather as 100! This required usage

of the comma probably seems unnecessarily complex, however, FORTH

must have a way of uniquely separating single-word integers from double-

word integers and the comma convention is the method used.

Consider the declaration

99, 2VARIABLE XX

which defines a double-word integer variable named XX , with an

initial value of 99. The sequence
XX Da

pushes the current 2-word value of XX onto the top two words of the

stack. The sequence
500001 , XX D1

stores 500001 as the new value of XX. Now consider the declaration

1, 2CONSTANT D1

which defines a double-word integer constant named D1, with an initial

value of 1. The sequence
D1

pushes the 2-word value of D1 onto the top two words of the stack,

To store 100 as the new value of D1 the sequence
100, ' D1 D!

is required. Summarizing the results of the previous section and the

results of this sections yields the table:

Oct. 1979

to push current to store top value

|
value onto stack on stack as variable's

new value
N
VARIABLE <name> @ © <name> . value occupies
? one word
CONSTANT <name> ' <name> ! on stack
2VARIABLE <name> D@ <name> D? value occupies
> two words
on stack
2 CONSTANT <name> ' <name> D! n sta

Now consider the interaction of the stack in executing a sequence of
double-word loads and stores, using the variables XX and D1 declared

above. Assume the line of input is as follows:

XX Da D1 D+ ' D1 D!
D1 D.

(The word D+ is the double-word addition operator, which adds together
two double-word integer values, similar to the single-word addition

operator +. We also have the double-word subtraction operator D-).

Oct. 1979 7-9

WORD FROM CONTENTS
INPUT ACTION OF STACK
XX Push address of 2-word value address of

onto stack ——> value of XX
Da Take address on top of stack and - 99 i
replace it with 2-word value =---->
— 1 P
Push the 2-word value onto
b1 stack -——=>
~ 99
Add together the two double-word
D+ integer values on top of the L 100 -]
stack and then push the result
onto the stack T
' Take the next word of input (D1) address of
and push the address of its value value of Di
onto the stack -—==>
- 100 =
D! Take the address on top of the stack
and store the 2-word integer value
beneath the address at the address,
then pop the address and the 2-word
value off the stack = -=--- > empty
Push the 2-word value onto the
D1 - 100
stack ————>
D. Print the 2-word integer value on
top of the stack, then pop the empty
2-word value off the stack -—==>
7-10 Feb. 1977

7.3

The words in FORTH to operate on single-word integers (the words
VARIABLE CONSTANT + - * / . etc.) are all defined
within basic FORTH and therefore will be in the dictionary after the
user loads basic FORTH (Chapter 3). These words are considered essential
to any FORTH program and are therefore always available. The words used
to operate on double-word integers (the words 2VARIABLE 2CONSTANT
D+ D- D. etc.) are considered optional and are not automatically
entered into the dictionary with basic FORTH. Instead, if you wish to
use double-word integers you must specifically load the appropriate
words into the dictionary by executing the word USER . ,

This will load into core (i.e. - enter into the dictionary)
the double-word integér routines, the floating-point routines and other

miscel laneous routines to be described later.

FLOATING-POINT NUMBERS

The data structures presented in the previous sections (single-word
integer and double-word integer) are exact representations of integer
values. This means that arithmetic performed on single-word integers
or double-word integers yields exact answers: 2 * 3 is exactly 6,

not 5.999++ ; 5 + 9 is exactly 14, not 14.000001. As long as the
user stays within the range of the data structure (which for a double-
word integer is -1,073,741,824 to +1,073,741,823) this guarantee of
exactness for integer arithmetic holds. The obvious drawback in using
integers is the limited range that is available - in Varian FORTH a
double-word integer corresponds to just over 9 digits of precision.
For some applications (noteably financial programming with the COBOL
language) the exactness of integer arithmetic is a requisite and the
data structures being represented will never exceed approximately
15-20 digits, hence exact arithmetic is used (using a slight variation

of integer representation).

Oct. 1979 7-11

Scientific programming, on the other hand, requires a data structure
that provides a far greater range of values so that very large numbers
(for exampie, Avagadro's number N = 6.02250 x 1023) and very small
numbers (for example, Planck's constant h = 1.0545 x 10727) can both
be stored. Additionally, scientific programming does not require that
these numbers be represented exactly but only that a specified number
of digits of accuracy be maintained. The data structure provided by
most programming languages (and by FORTH) for scientific computation
is floating-point. A floating-point number is stored in the computer
as a fraction times an exponent, similar to standard scientific
notation. In Varian FORTH a floating-point number is stored in three
consecutive words of memory and each floating-point number requires

three words on the stack. The fraction will be in the range
0.0 < |fraction| < 1.0

and provides approximately 9 digits of accuracy. The exponent will be

in the range
-32,768 < exponent < 32,767

and denotes the power of 2 that the fraction is raised to, that is

. . . exponent
floating-point number = fraction * 2 P

In using floating-point numbers one is sacrificing exactness for
greater range. (If one were to store both Avagadro's number and

Plank's constant exactly, a computer word of approximately 100 bits

would be required!)

Feb. 1977

Oct.

There are two words that are available to declare either a floating—

point variable or a floating-point constant:

<initial-value> REAL <name>

<initial-value> FCONSTANT <name>

Using either of the above declarations causes a new dictionary entry to
be created and the entry is identified by the first three characters

and count of <name>. The difference in the above two declarations comes
when the word (identified by <name>) is executed - when a word defined
as an FCONSTANT is executed the 3-word value of the floating-point
constant is pushed onto the stack; when a word defined as a REAL s
executed the address of the 3-word value of the floating-point variable
is pushed onto the stack. Once the address of the 3-word value of a
floating-point variable is on the stack the floating-point load operator

(Fa) or the floating-point store operator (F!) may be used.

A floating—point number must contain a decimal point and may optionally

contain digits to the right of the decimal point.

1979 7-13

Consider the following examples:

3.14159
200.1
1.000
.27

1,0

b

1,50

1.0000

¥ ¥ ¥ ¥

¥

+

Consider the declaration

180.0 REAL

which defines a floating—point variable named THETA,

value of 180.0.

THETA F@

THETA

The sequence

.314159 % 10!
.2001 * 108

.1 % 10!
.27 * 10°
1
10
150

1 % 10!

floating—point

numbers

double-word

integers

floating-point
number

with an initial

Oct. 1979

Oct.

pushes the current 3-word value of THETA onto the top three words

of the stack. The sequence
90.000 THETA F!

stores 90. as the new value of THETA . Now consider the declaration

3.14 FCONSTANT PI

which defines a floating point constant named PI , with an initial

value of 3.14, The sequence
PI

pushes the 3-word value of PI onto the top three words of the stack.
To store 3.14159265 as the new value of PI (note that this new value
uses the full 9-digits of accuracy provided by FORTH for a floating—

point number) the sequence
3.14159265 ' PI F

is required. Summarizing the results of the previous two sections and

the results of this section yields the table:

to push ¢turrent to store top value
value onto stack on stack as variable's
new value

VARIABLE <name> @ <pame> !
CONSTANT <name> ' <pame> !
2VARIABLE <pame> D@ <name> D!
2CONSTANT <name> ' <npame> D!
REAL <name> F2@ <name> F!
FCONSTANT <name> ' <pame> F!

1979 7-15

Now consider the input line

PI THETA Fa@ F* THETA F!
THETA Fa F.

and the interaction of the stack. (The word F* is the floating-point
multiplication operator, similar to the word *. We also have the words
F+ F- and F,/ for floating-point addition, subtraction and
division. The word F. prints the floating-point number on top of
the stack.)

WORD FROM CONTENTS
INPUT ACTION OF STACK
PI Push the 3-word value onto the stack =---- >
3.14
address of
THETA Push the address of the 3-word value value of THETA
onto the stack ~ ====- >
3.14
. —
Fa Take the address on top of the stack
and replace it with the 3-word — —
180.0
valuee ===== > .
3.14
= -
7-16 Feb. 1977

WORD FROM

CONTENTS

INPUT ACTI0N OF STACK
F* Multiply together the top two floating-
point numbers on the stack and then — —
push the result onto the stack ~ ====~ 565.2
THETA Push the address of the 3-word value address of
onto the stack mmee- value of THETA
565.2
F!i Take the address on top of the stack and
store the 3-word value beneath the
address at the address, then pop the
address and the 3-word value off the stack
the stack == ==- empty
THETA Push the address of the 3-word value address of
onto the stack memm- value of THETA
Fa Take the address on top of the stack and [—
replace it with the 3-word value -==-- 565.2
F. Print the floating-point number on top
of the stack, then pop the 3-word value
off the stack —===- empty
Feb. 1977 7-17

7.4

7-18

Floating-point numbers may optionally be entered as a fraction times a

power of ten (similar to the Fortran E format). The number 0.25 could

be entered as any of the following:

0.25
0.25E0
25,.E-2
2500.0E~-4
.0000250E4

CONVERSIONS BETWEEN DATA STRUCTURES

Frequently the need arises to convert a number that is on the stack to

another data type. For example, you may want to convert a single-word

integer to a floating-point number, a floating-point number to a

double-word integer and so on. The following table summarizes the

words available to perform this conversion:

name of converts

word from =--m- 5 to notes

SFLDAT single-word integer floating-point

DFLOAT double-word integer | floating-point

SFIX floating-point single-word integer (truncates)

DFIX floating-point double-word integer | (truncates)
Oct. 1979

Consider the following examples:

5 SFLOAT F. will print 5.0
765. DFLOAT F. will print 765.0
3.14159 SFIX . will print 3
1.999 DFIX D. will print 1

It is very important to remember that every conversion involves a
change in the number of words of the stack used by the number. SFLOAT

converts a single-word integer to a 3-word floating-point number:

-

5.0 > 3-word floating-

{ - — point number

single-word
integer

Similarly DFIX converts a 3-word floating-point number to a

double-word integer:

!
f .
3-word -
fl?atlng- 2 3.14159 double~word
point _ - 3 —
number —> integer
\

There are no specific words provided to convert a single-word integer to
a double-word integer or vice-versa and since these two conversions are
somewhat tricky (requiring a knowledge of the internal storage represen-

tation of the data types) their discussion is deferred until later.

Oct. 1979 7-19

7.5

7-20

LOGICAL VALUES AND LOGICAL EXPRESS IONS

There is no specific data type named logical in FORTH, instead one uses

a single-word integer as a logical value and interprets the value as

follows:
zero valued integer --~> FALSE
non-zero valued integer ---> TRUE

Thus whenever FORTH calls for a <logical-condition> one must provide a
single-word integer value. The use of these logical conditions should

become clear in the ensuing chapters.

Additionally, one may combine more than one <logical-condition> to form

a logical expression using the following words:

AND Forms the logical-AND of the two single-word
integer values (i.e. - logical values) on
top of the stack. The logical-AND is

defined as follows:

true true AND ———> true

true false AND -==> false
false true AND --=> false
false false AND --=> false

(the result is true if both of the operands are true).

OR Forms the inclusive-OR of the two single-word integer
values (i.e. - logical values) on top of the stack.

The inclusive-0OR is defined as follows:

true true OR -—=> true
true false OR --=> true
false true OR ———> true
false false OR -—=> false

(the result is true if either of the operands is true).

Feb. 1977

XOR Forms the exclusive-OR of the two single-word integer
values (i.e. - logical values) on top of the stack.

The exclusive-0R is defined as follows:

true true XOR m———> false
true false XOR m———> true
false true XOR -——> true
false false XOR —-—=> false

(the result is true if only one of the operands is true).

Oct. 1979 7-21

ADDITIONAL NUMERIC CONVERSIONS

All of the examples in this primer have presented the numbers in base‘

ten, decimal. Any base may be used for numeric input and the VARIABLE
BASE specifies the current base to be used for number conversion. Three
words are predefined, DECIMAL OCTAL and HEX which set base to 10,

8 and 16 respectively. Furthermore, if the current base is less than or
equal to ten (decimal or octal) and the last character of a number is

a B then the number is converted as an octal number. For example,

20B equals 1610

Since B is a legal hexadecimal digit, if the base is greater than ten
a trailing B will not force octal conversion. |If one wishes to force
octal conversion of a double-word integer then the B must follow the
comma:

20,8B

is a double-word integer 16]0.

7-22 Oct. 1979

One of FORTH's truly unique features is its acceptance of sexagesimal
(base sixty) input. This facilitates the input of angles (in degrees,
minutes, seconds - such as 8:58:05) and times (in hours, minutes,
seconds = such as 9:01:09). FORTH accomplishes this by allowing a
colon to appear within any number and then converting the digit
immediately following the colon using base 6.

All digits following this first digit

after the colon are converted according to the current base (i.e. -
decimal or octal, as explained above). For example, the

number 000100 is interpreted as 100, while the number

00:01:00 is interpreted as 60, This latter number could represent,
for example, the time-of-day of one minute past midnight which equals
60 seconds past midnight. Similarly, 00:03:00 is interpreted
as 180. Hence, if the quantity being entered is a time, then the
resulting value will represent the number of seconds past midnight.

If the quantity is an angle, then the resulting value represents the
number of seconds of angle. Additionally, if a floating-point number
is used then a time may be specified as fractions of a second or an

‘angle may be specified as fractions of a second. For example:

12:00:01.5 could represent the time of one and
a half seconds past noon; also it

could represent the angle 12° 00' 01.5'.

Note that since the digit following the colon is interpreted as base 6,
this digit can only be 0 through 5. The number g:80 , for example,
is illegal. This also means that the minutes and seconds of either an
angle or a time must be entered as exactly two digits. The time of one

minute past eight must be entered as either

8:01:00 or 08:01:00
and not as

8:001:00 or 8:1:00

Oct. 1979 7-23

The use of sexagesimal rotation in a number forces the number to be interpreted

as a double-word integer unless the number contains a decimal point.

example
01:00 — double-word integer 60
01:00, —39 double-word integer 60
01:00. —® floating-point 60.0

7-2h

For

Oct.

1979

7.7

Oct.

VECTORS

FORTH provides the ability to declare a vector of either integers,
double-word integers or floating-point numbers. This data structure
is similar to a one-dimensional array in Fortran. FORTH does not
provide any muiti-dimensional arrays. (However, given the structure
of FORTH one could define new words to declare and access multi-
dimensional arrays. Unfortunately, this is beyond the scope of

this primer.)

To declare a vector of single-word integers one would execute
<maximum-subscript> ()DIM <name>
For example, the following defines a four element vector named X :
3 ()DIM X

The four elements would be accessed by using the subscripts 0, 1, 2

and 3 and a memory diagram might be

element 3

element 2

element 1

element O

Note that the subscript starts at 0, therefore the number of elements

equals <maximum=-subscript> + 1.

In order to access a single element one executes
<subscript-value> <name>

and, for example, the sequence

1979 7-25

calculates the address of element 3. This address may be used just

like the address of any integer value, for example
1 X @a
pushes the value of element 1 onto the stack. The sequence
0 X @ 3 X

takes the value of element O and puts it in element 3. Finally the

sequence
0 X @ 1 X 2 + 2 X @ + 3 X a +

forms the sum of all elements in the vector X.

Similarly we may declare a vector of double-word integers
<maximum-subscript> 2()DIM <name>

and a vector of floating-point numbers
<maximum~subscript> 3()DIM <name>

The two sequences

4 2()DIM Y
2 3()DIM Z

would declare a 5 element vector of double-word integers and a
3 element vector of floating-point numbers. Their memory represen-

tation could be

7-26 Oet. 1979

p— - element L e -

element 2
e -~ element 3

element 1
= - element 2 -~ -
— - element 1 - -

element O
oo -1 element O

To obtain the address of a specific element one executes
<subscript-value> <name>
For example
4 Y Dd DFLOAT 2 z F!

will push element 4 of the vector Y onto the stack, convert it
from a double-word integer to a floating-point number and store this
floating-point value in element 2 of z. Naturally there is no
requirement that the <subscript-value> be a numeric constant and

the following is perfectly valid:

0 VARIABLE INDEX

2 INDEX ! INDEX @& X @

Oct. 1979 7=27

EXERCISES - CHAPTER 7

1) Define a VARIABLE I (with initial value 5) and a CONSTANT J
(with initial value 100) and calculate the following series of

expressions:

I =1+ 1
J=1%*5

PRINT I, J

I = (J * J) - 10

J (I 7 J) + 2

PRINT I, J

2) Definea VARIABLE A. (with initial value 20) and a CONSTANT B
(with initial value 32) then calculate the following expression:

B = A + B

A +—B— 4 &
A-1 B

Then print the value that was stored in B.

3) Define a 2VARIABLE 11 (with initial value 10) and
a DCONSTANT JJ (with initial value 30) and calculate the

following expressions:

11 = JJ + 1
JJ

JJd - 11

PRINT 1II, JJ

II = I1I + JJ + 101
JJ

JJ + 11
PRINT I1, JJ

7-28 Oct. 1979

4) Code the expression
A =B * (C + D)

in two ways, using the fact that addition is a distributive operator
(i.e. = b * (¢ +d) =b *c +b * d).

Assume that A is a CONSTANT, initial value 1
B is a VARIABLE, initial value 5
C is a CONSTANT, initial value 8
D

is a VARIABLE, initial value 25,

Confirm that both methods generate the same answer.

5) Code the expression
A =B + C+ D + E

in two ways, using the fact that addition is a commutative operator

(i.e. -b+c+d+e = e+d+c+b). Assume that
A is a '2CONSTANT, initial value 3
B is a 2 VARIABLE initial value 5
c is a 2CONSTANT, initial value 7
D is a 2 VARIABLE initial value 11
E is a 2CONSTANT, initial value 17.

Confirm that both methods generate the same result.

6) What expression do the following lines of FORTH code correspond to?

7.0 REAL A
8.0 REAL B
1.0 REAL C

B Fa B Fa F* 4,0 A Fa F* C Fa F* F-

What value is obtained when the expression is evaluated?

Where is this value stored?

Oct. 1979 7-29

7) What is the largest time-of-day (counted in seconds) that may be

stored in a single-word integer? In a double-word integer?

8) Using the definitions

5 VARIABLE I
12 CONSTANT J
280. 2VARIABLE A
257. 2CONSTANT B

1.325 REAL
5.0 FCONSTANT Y

Calculate and print the value of the expression

= L *rx) //
Y =
(A - B) (7Y

9) Will the following FORTH expressions be interpreted as true or false?

a) 1.2 + 4 7/

b) 1 0 AND

€) 1 1 AND

d) o o OR

e) 58 / 2 1 — XOR
f) 122 - 0R

10) What will the following FORTH expression print?

DECIMAL 10 OCTAL 10 - DECIMAL

7-30 Oct. 1979

8.1

Oct.

STACK OPERATIONS

A1l of the stack operations up to this point have involved pushing a
number onto the top of the stack, popping a number off the top of the
stack and performing arithmetic on the top two numbers on the stack.
This chapter describes some additional operations that may be performed

on the stack.

MANIPULATION WORDS

Frequently one can ''optimize'' the evaluation of an arithmetic expression
by intelligently using the stack to hold temporary results, rather than
storing every temporary result in a variable. For example consider the

declarations:

4 VARIABLE
18 VARIABLE
VARIABLE

0 VARIABLE

<X X @® >

and the subsequent evaluation of the expressions

X = A + B
Y =X + 1

Using the methods described in this manual up to this point one would
code this in FORTH as

which is perfectly correct and acceptable. Now assume we have available
to use the word DUP which simply duplicates the single-word quantity

on top of the stack. For example

S DUP

1979 8-1

performs the following stack operations:

Similarly we have 2DUP and 3DUP which duplicate 2-word stack

entities and 3-word stack entities:

25
»
— 25— 25
25, 2DUP
2.718
¢ ot
e o
2.718 2.718

2.718 3DUP

8-2

Oct.

1979

Note that the terms “'single-word quantity", ''2-word entity'' and

"3word entity' are used {nstead of ''single-word integer", ""double-word
integer' and "floating-point number'' to describe the stack entries
being manipulated. This is because unlike the arithmetic operators,
which expect the top entries on the stack to be a specific type of
number, the stack manipulation words being described in this chapter

do not care what internal form of data they are working on. The word
DUP will gladly duplicate a single-word integer or a 1-word address.
Similarly the word 2DUP could be used to duplicate either a

double-word integer or two single-word integers, as follows:

5
2
>
5 5
2 2
2 5 2DUP

The stack is a general purpose ''tool! and as such a variety of different
entities may reside on the stack for totally different purposes. It is
important to always know, when writing a program, what quantities are on
the stack and what format these quantities are in (number, address, etc.).
FORTH will gladly allow you to perform erroneous operations on the wrong
type of data structure (such as taking the square root of a single-word
address, thinking the address was really a single-word integer) although

the results are usually disastrous (and sometimes hard to find).

Getting back to the original example we may alternately code

A+ B

X + 1

Feb. 1977 8-3

as

A a Ba + DUP X

What we have done is duplicate the quantity being stored in X (namely
A + B) and then after storing one copy of this result in X we use
the second copy to compute Y = X + 1., This saves having to load X
from core back onto the stack in order to calculate Y = X + 1.

The sequence of stack operations is as follows:

address of] '
value of B 18 22
address of
value of A b b b 22 22
] B @ + DUP

address of
value of X

22 1 addressofl

value of Y

22 22 22 23 23

empty

8-4

! 1 + Y !

Although this example may seem somewhat trivial (so what if we save a
single load?) on some computers stack manipulations may be many times
faster than core-to-stack or stack-to-core operations so that it can
really be beneficial to retain values on the stack whenever possible.
One must not go overboard and try to keep everything on the stack at

all times or you will soon lose track of just what is on the stack.

Feb. 1977

A summary of the available stack operations is provided in table 8.1
and examples of the important operators are given below. All examp les
will be given using numbers as the stack entries although as mentioned

previously, the use of these operators is not restricted to numbers.

6.0
— 7 -
8 6.0 6.0
— 7 1 7 7 [~ T (‘ N
8 l
DUP 2DUP 3DUP
4.0 2.0
. 5 -] | 1 -
1 2.0 4.0
3
SWAP 2SWAP 3SWAP

1977 8-5

12.0

- 3 -
9.0 9.0
5
DROP 2DROP 3DROP
- -
6.0
- 5 - — — f— -
2.0 2.0
- 3 — - 3 —
! i
l} - b~ —
6.0 6.0
- 5 - | — 5 - [—~ -
7
OVER 20VER 30VER

Feb. 1977

Oct.

ROT 2 2

2 5.1 4 PICK

One error that will be detected by FORTH is stack underflow. This
occurs when the stack is empty and the program attempts to operate on
the stack. (The only valid operation to perform on an empty stack is

to push a number onto the stack.) For example, the sequence

1 +

will generate the response + ?U since the single-word addition

operator expects two single-word integers on the stack. (This example

assumes the stack was empty prior to entering the sequence 1+).

1979 8-7

spiop uojjefndjuey - |*g 379Vl

Y0 SAISN|2X® 419yl yllm SpJIOM OM] do1 ay3 seooe|doy HOX
WO SAISN|DUl 413yl Yl IM SpPJIOM OM] doj ay3 seooe|dey ¥O
*gNY LeotBo| 418yl yizim spJaom oMl dol syi seooe|day aNv
*d3A0 o1
[B213Udpl ST HDIdH 2 pue dNA O1 |ed2i1udp|
sl SDId 1 *)oe1s syl uo puom dol syl si u
aJ4oym ‘>oels eyl jo dol 3yl ojuo Ados syl saysnd AD1dE AD1de M21d
pue >Je3S 3yl UO pJOM U 3yl 4O Adoo e saye]
*puodas 9yl 01 dol ayi pue
P11yl oy3 01 puodas ayi ‘dol syl 01 pdiyl =yl LoNE Louz L0Y
BuiAow €>oe3s 2yl uO SpJOM B34yl dol syl saieloy
*3yoe3s ay3 4o dol 9yl ojuo Adod siy3 saysnd NIAOE N3NOZ NIAO
pue >oe}s ay3} Uo AJ3ud puodds Byl 40 Adoo e sadel
soels oyl woudy Aajus dol 2yl s9319(3(Q d0ddE d0daze d0dda
¥oe3s ay3 uo sajJjue om} dol Ayl sabueysuaaiu| dVMSE dYMSZ dYMS
*3oe3s 9yl uo Aijus dol ay3 so1e01|dng dnas dnae dna
uo3di19s9q sJolesadg sdojesadg sl103etadg
pAoM-¢ p-10M-¢ plomM-1

1979

Oct.

8-8

8.2

Oct.

COMPAR | SON WORDS

These words numerically compare the top one or two numbers on the stack

leaving a logical value (true or false, as described in Section 7.5) as

the result. These words operate on either single-word integers or

floating-point numbers as shown in Table 8.2.

are given below.

9
8 9
9 MAX
-3
9 -3
-3 MIN

1979

Examples of these words

-8.5
. <y
. — - e
2.1 2.1
o e o —
-8.5 FMAX
~-8.5
2.1 -8.5
-8.5 FMIN

8-9

25

25

. p—
25 10
25 1 (TRUE) 0 (FALSE)
1.0 1.1 F=
3.5
2 3.0
5 1 (TRUE) 0 (FALSE)
>
3.0 3.5 F>

Oct. 1979

fosee -
2 3.1
5 0 (FALSE) 1 (TRUE)
S 2 <
3.1 8.2 F<
0.05
0 1 (TRUE) 0 (FALSE)
0 0=
0.05 FO=
-5.2
o -
28 0 (FALSE) 1 (TRUE)
28 0<
-5.2 FO<L

Oct. 1979 8-11

spdoM uosidedwo) - z°g 3749VL

=>0
=<0
‘o432z pue Jaqunu <>0
ay] ueemiaq diysuoile|od oyj uo Bujpuadep <0
(o49Z) 3Sv4 L0 {o49z~uou) INYL anjeA >04 >0d >0
{e2160] 9yl y3im Joqunu dol dyz sode|dey =04 =0a =
<>
<4 <d <
-diysuoiie(aa 119yl uo bujpuadap (049z) >4 >d >
3S1y4d 10 {049z-uou) INUL ON|eA Lpo1bo} = - =
oyl yiim ssaqunu om3l dol 8yl sade|day
*apn3jubew aassa} syl bBuiaey Jsqunu
syl y3iim siaqunu oml doi a3yl saoe|doy NIWH NIWG NIW
-opnjjubew Jao3eaub syl bujAey Jaqunu
3yl yiim sasqunu oml doj ay3 sade|dsy Xvid XVia XVW
uo11d119s3g Juiod TR J9b693uj
A bujiieo| 4 p4om-a|gnog piom-sbuig

1979

Oct.

8-12

Oct.

EXERCISES - CHAPTER 8

1)

2)

3)

4)

Given the definitions
5. 2VARIABLE X
9. 2C0ONSTANT
0. 2CONSTANT Z

<

evaluate the expression
Z = 2 * (X -Y)

in two ways. Print the result that is stored in

there is not a double-word integer multiply.

Using the definitions in question 1, evaluate the

Z = (X -Y) + (X +Y)

loading the value of X onto the stack only once.

result that is stored in 2Z.

Using the definitions in question 1, evaluate the
Z = (X + Y) + (X - Y)

loading the value of X onto the stack only once
value of Y onto the stack only once. Print the

stored in Z.

Z. Note that

expression

Print the

expression

and loading the

result that

is

What is the final contents of the stack after each of the following

sequences is executed?

a) 5 DUP 4 + -
b) 12 3 OVER SWAP DROP +
c) 1 DUP 2 OVER + ROT 3DUP 2DROP

1979

+ * -

8-13

6)

Are the two following sequences identical (i.e. - will the

contents of the stack be identical upon completion of each
sequence)?

7 4 OVER
7 4 SWAP DUP ROT ROT

The word p3ck copies a single-word integer from a location

within the stack onto the top of the stack. Define two words

2PICK and 3PICK which copy a 2-word entity and a 3-word

entity (respectively) from the nth word on the stack onto
the top of the stack, where n

is the top word on the stack.
For example:

S 5
27, 5 3

2PICK

Oct.

1979

Oct.

6)

1979

Continued

5.8
"
9
3
5.8
5 3PICK

9. THE COLON DEFINITION

All examples and problems up to this point have involved typing in words
and numbers on the terminal keyboard and getting the answer printed out
immediately. What if we have a sequence of words, such as given in
exercise 6 of Chapter 7, to evaluate a given mathematical formula and

we want to execute the words many times, each time changing the value

of the input variable(s)? Up to this point our only option is to key

in the entire sequence of FORTH words comprising the formula each time.
Obviously this is unacceptable and it is the purpose of this chapter to
introduce the technique whereby a given sequence of words can be

"remembered' in the dictionary.

As a simple example say that we want to increment the value of an
integer variable (named J) by one. The following sequence performs

this task:
Ja 1 + J !

Now after keying this in on the terminal a half dozen times we become
tired and decide to enter this sequence into the dictionary. First we
must assign the sequence a name, since all dictionary entries are
identified by the first three characters and count of a user assigned
name. |If we decide to name it INCJ then we may write the colon

definition

: INCU J a2 1 + J !)

name
the colon starts the semi-colon terminates
the definition the definition

First note that the colon starts the definition and the semi-colon
terminates the definition. Following the colon is the name that
identifies the definition in the dictionary (in this case the first

three characters are I N C and the count is 4). Everything following

Feb. 1977 9-1

9-2

the name, up to the semi-colon, comprises the definition. When

the word INCJ is executed then the six-word sequence
Ja 1t + J

will be executed. Consider the following lines of code as an example:

g8 J ! [set the current value of J to 8]
INCJ [increment the value of J by 1]
Ja . [will print 9]

INCJ [increment the value of J by 1]
INCJ [increment the value of J by 1]
Ja . [will print 11]

Perhaps the analogy to keep in mind is the two step compilation/execution
sequence of a Fortran program - first you compile the program,

subroutine and functions and then you execute the program (which may
execute the subroutines or functions, which may execute other subroutines
or functions, etc.). In FORTH you may consider keying the colon
definition as similar to compilation - the word is entered into the
dictionary. After the word has been entered into the dictionary you

may then execute the word whenever you wish.

Similar to the concept of one subprogram calling another subprogram, one
word in FORTH can execute another word. If we wanted to increment the

value of U by three then we could define another word named 3INCJ

to perform this:
: 3INCJ INCJ INCJ INCJ H

Note however that the above definition will perform the same function

as the following definition
: 3INCJ J @ 3 + J !

that is, increment the value of J by 3.

Feb. 1977

Going back to the Fortran compilation/execution analogy you know that
there are two types of errors that may be detected in a Fortran

program - compilation errors (missing statement number, invalid syntax,
etc.) and execution errors (exponent overflow/underflow, trying to take
the square root of a negative number, etc.). Similarly in FORTH, some
errors will be detected when the colon definition is entered into the
dictionary and some errors will not be detected until the newly defined
word is executed. As an example of the first type of error, if we

mistakedly would have keyed in

: 3INCJ XNCJ INCJ INCJ H
1 _ error
FORTH will immediately respond with

XNCJ 7Q

Since it will not locate the word XNCJ in the dictionary (assuming
you have not previously defined a word named XNcCJ). This brings up

the very important rule:

All words appearing in a colon definition (following the name
of the definition and up to the semi-colon) must be either

previously defined words or numbers.

This rule is dictated by the fact that the FORTH compiler is a one-pass

compiler.

As an example of an execution error assume that we had mistakedly entered
: INCY 1+ J !

as the original definition of INcJ (we forgot to load the original
value of J onto the stack for the addition). FORTH will gladly enter
this word into the dictionary however the first time the word INCJ

is executed FORTH will respond with

INCJ 2V

Feb. 1977 9-3

since the addition operator expects two numbers on the stack.

Returning to the one-pass restriction, it means that the sequence

0 VARIABLE J
INCU Ja 1 + J°!

: 3INCJ INCJ INCJ INCJ H
is valid, however the sequence

INC Ja 1 + J !
0 VARIABLE J

o
-

: 3INCJ INCJ INCJ INCJ H

is invalid (the definition of J must precede the reference to J in

the definition of INCJ). Also, the sequence

0 VARIABLE J
: 3INCJ INCJ INCJ INCJ
s INCU J 2@ t + J ! 3

is invalid since the reference to INCJ in the defintion of 3INCJ
precedes the definition of INCUJ. Although the one-pass feature of
FORTH somewhat restricts the appearance of definitions it greatly

speeds up the compilation.

The stack turns out to be the most natural way to pass parameters to a
word which is to be executed. Consider the definition of a word we'll

call Fsa which forms the square of a floating-point number. If we

enter

8.0 FsQ F.

we expect 64.0 to be printed. Here the number 8.0 is the 'parameter"

to Fsa and the '"result'" is left on the stack. The definition of
FsQ could be

: FsSQ 3DUP F* 3

Oct. 1979

and this performs the desired operation. Given this defintion of

FsQ and the variable declarations

7.0 REAL A
8.0 REAL B
1.0 REAL C

we can code the expression (B2 - 4AC) as
: DISCR B Fa FSQ 4.0 A Fa F*¥ C Fa F* F-

where we have chosen the name DISCR to identify this calculation.

Entering
DISCR F.

will print 36.0 as the value of the expression (using the initial

values of A, B and C given above).

Similarly, if we enter

4.0 A F:
9.0 B F!
2.0 C F.
DISCR F.

we should have the value 49.0 printed. We can now use the word
DISR that we have defined and write a word to solve the old faithful
quadratic equation

-8 + /B% - aAC

2A

(Assume at this point that we are dealing only with strictly positive
discriminants to avoid worrying about a single root or two imaginary

roots.)

Oct. 1979 9-5

+ 1IROOT B Fa FMINUS DISCR FSQRT F+ A F@ 2.0 F* F/
t 2ROOT B F@ FMINUS DISCR FSQRT. F- A F@a 2.0 F* F/ 3
: QUAD 1ROOT F, 2RO0OT F. 3

Executing QUAD (with A= 4.0, B= 9.0, C = 2.0 from above) should
print

-0.25 -2.0
as the roots of the equation. The new words introduced in the above are

FMINUS (which negates a floating-point number) and FSQRT (which

evaluates the square root of a floating-point number).

A useful word that deserves mentioning here is the SET word which
can often times be used instead of a colon definition to set a flag.

Consider the definition

0 VARIABLE °PLOT

which we use as a logical flag (Section 7.5) to indicate whether or
not we want to plot some points. A simple way to set or reset this

flag would be

PLOTON 1 ?PLOT ! 3

o

: PLOTOFF O ?PLOT !

However a faster and more efficient method of setting the integer

?PLOT to a specific value is to enter the definitions

1 ?PLOT SET PLOTON
0 ?PLOT SET PLOTOFF

Executing the word PLOTON will set the value of ?PLOT to 1,

regardless which definition is used.

The general form for the SET definitions is
<integer-value> <address> SET <name>

and then executing the word <name> will store the <integer-value>

9-6 Oct. 1979

May 1978

at the specified <address>. (Recall from Section 7.1 that executing
the word ?PLOT will push onto the stack the address of the

variable). |If we had a definition
0 CONSTANT FLAG
then we could define the words

0 ' FLAG SET FLAGON
1 ' FLAG SET FLAGOFF

to turn the flag on and off.

If one wanted to turn on two flags at the same time then the word

2SET may be used. Its form is
<valuel> <addresst> <value2> <address2> 2SET <name>

and then executing the word <name> will store <valuel> at <addressi>
and <value2> at <address2>. For example, using the previous defini-

tions of 2?PLOT and FLAG we could write the definitions

: BON i ?PLOT ! 1 ' FLAG ! :
: BOFF 0 ?PLOT ! o0 ' FLAG !

-e

or equivalently,

1 ?PLOT 1 ' FLAG ! 2SET BON
0 ?PLOT O ' FLAG ! 2SET BOFF

EXERCISES - CHAPTER 9

1) Define a word named 1**4 that will raise the single-word
integer on top of the stack to its bLth power. There are
two obvious ways to code this word. Verify that
2% = 16, 3% = 81, 4* = 256, 5% = 625, etc. Which method

is preferable?

9-7

10.

10.1

Feb.

PROGRAM CONTROL

1977 10

In the discussion of the colon definition in the previous chapter the
words comprising the definition were executed sequentially. For

example, in the definition
t QUAD 1ROOT F. 2RO0T F. H

first the word 1ROOT is executed, then the word F. is executed,
then the word 2ROOT is executed and finally the word F. is

executed.

Often times we want to be able to control the flow of execution through
a colon definition based on certain programmatic decisions. 1In Fortran
you may use DO loops and IF statements to control the flow of execution
through a program and FORTH contains similar control structures,

described in this chapter.

DO LOOPS

The FORTH DO loop may be used within a colon definition to repeatedly
execute a sequence of words. There are two forms provided, depending
whether the loop index is to increment by +1 each time through or

whether the loop index is to change by a programmer specified value:

<limit-value> <starting-value> DO <words> LooP

<limit~-value> <starting-value> DO <words> <increment-value> +LO0OOP

<starting-value> 1is a single-word integer value specifying the value -

of the loop index the first time through the loop.

<limit-value> is a single-word integer value specifying the upper
limit of the loop index. |If the loop index is

inereasing, the loop will terminate when the loop

1

index reaches this <limit-value>. When the loop index
is decreasing, the loop will terminate when the loop

index passes this <limit-value>.

<words> are the words to be executed each time through the

loop.

<increment-value> is a single-word integer value specifying the value
by which the loop index is to be incremented or
decremented each time through the loop. If this
<increment-value> is specified then the word +LOOP

must terminate the DO loop.

As in Fortran, a DO loop in FORTH will always be executed at least

once. Some examples should help clarify the above descriptions.

LOOP SPECIFICATION LOOP INDEX VALUES
5 1 DO <words> LOOP 1, 2, 3, &4
identical
5 1 DO <words> 1 +LOOP 1, 2, 3, & loops
1 5 DO <words> -1 +L0OOP 5, 4, 3, 2, 1
-8 -6 DO <words> -1 +LOOP -6, -7, -8
11 3 DO <words> 2 +LOOP 3, 5, 7, 9
-3 -11 DO <words> +2 +LOOP -11, -9, -7, -5
50 25 DO <words> 5 +LOOP 25, 30, 35, Lo, 45
0 1000 DO <words> LOOP 1000
-99 -99 DO <words> -1 +LOOP -99

10~2 Feb, 1977

Before continuing on make certain that you understand these examples and
proceed to the exercises at the end of the chapter and work the first

exercise.

In order to access the loop index while executing a DO loop the word
I must be executed. Executing this word pushes onto the stack the
current single-word integer value of the loop index. In this respect
the word 1 acts like a CONSTANT and not a VARIABLE. For

example we can define a word named PRNT

: PRNT S 1 DO 1 . LOOP 3

and executing the word PRNT will print 1 2 3 4 on the
terminal. |If we wanted to form the sum of the integers from 50 through
100 (inclusive) and then print the result we could define a word named

SUM
: SUM O 101 S50 DO I + LOOP . 3

and executing the word sUM will print 3825, Note

that in this example we initially push 0 onto the stack to initialize
the sum. We then add each value of the loop index to the top number on
the stack, leaving the result on top of the stack for the next time
through the loop. When the loop terminates, the top number on the
stack is the sum and we may then print this value. This is a good
example of the usefulness of keeping a temporary result on the stack
instead of storing and loading the value in a temporary variable.
Convince yourself that the following word performs the identical

function as SuMm

s SUM1 0 50 100 DO 1 + -1 +L0O0P . 3

Oct. 1979 10-3

10-4

The stack operations involved when the word

as follows:

is executed are

50
101 101 50
0 0 0 0 0 50
0 101 50 DO
51 52
50 50 101 101 101 153
LOOoP I + LLOoP
100
s o ¢ o o
153 3725 3825
LOOP I
3825 empty
LOOP

Note that the <starting-value> and <limit-value> are popped off the

stack by the word DO

and are then stored internally within FORTH.

Note also that the word LDOOP does not manipulate the stack (and
is shown in the above simply for clarity).

Feb. 1977

To show the stack operations involved when using the word +LOOP to

terminate a DO loop consider the word suM1 defined above

100
50 50 100
0 0 0 0 0 100
0 50 100 DO I +
-1 99 =1
100 100 100 199 199 199
-1 +LOOP I + -1 +L0OP
98 -1 50
o Q0 @
199 297 297 297 3775
I + -1 +LOOP I
-1
3825 3825 3825 empty
+ -1 +LOOP .

The word +LOOP pops the <increment-value> off the stack each time

it is executed.

Feb. 1977 10

5

10-6

DO loops in FORTH may be nested and in order to access the loop

index from within a nested loop the words 1, J and K are used as

follows:
) accesses the loop index from the innermost loop,
J - accesses the loop index from the loop outside of the
innermost loop,
K - accesses the loop index from the loop two levels outside

of the innermost loop.

The words I J K act as CONSTANTs in that one simply
executes the word in order to push the value of the appropriate
loop index onto the stack. However, it is not possible to store
new values in these words by executing, for example, L G-
In other words, the current value of the loop index may be read

only.

DO loops in FORTH are not limited to a maximum nesting of three, as
might be indicated from the discussion above, however the gory details

of further nesting is beyond the scope of this primer.

If the word LEAVE is executed within the range of a DO loop this
will force the loop to terminate when the next LOOP or +LOOP is
executed. This provides a handy method of terminating a loop before

the specified <limit-value> is reached,

The current value of a loop index is accessible only within the colon

definition which contains the words DO and LOOP. For example
: ISQ I DUP *

: ILOOP 10 a DO IsQ@ LODP
is not allowed since 1 (the current value of the loop index) is
available only within the word ILOOP and not within words called

by 1LooP (such as the word 1sQ).

Oct. 1979

10.2 BEGIN-END LOOPS

This control structure may be used within a colon definition to
repetitively execute a sequence of words until a specified logical

condition is true. The format of the loop is
BEGIN <words> <logical-condition> END

The most frequent use of this structure is to 'wait" for a certain
condition to occur. For example, basic FORTH provides a word named
2TER and when executed it pushes a value of true onto the stack

(a non-zero integer value) only if the operator has entered a character
on the tefminal, otherwise a value of false (zero) is pushed onto the
stack. |If, at some point of a program, you wish to wait for the

operator to enter a character, you could write

3 <name> s BEGIN ?TER END e 3

.
T /

this loop is executed continually
until a character is entered on

the terminal.

As another example assume that we want to terminate a loop only when
the value of a floating-point variable named DELTAX is less

than 0.01:
FLOATING
0.0 REAL DELTAX
¢ <name> cee BEGIN <words> DELTAX F@ 0.01 F< END ce

This example is typical of many numerical iterations where one is

waiting for a value to converge to some limiting value.

As another example let us code the word suM from the previous section

without using the DO loop:

Feb. 1977 10-7

0 CONSTANT INDEX

: INCINDEX INDEX 1 + ' INDEX ! 3

t SUM2 50 ' INDEX . 0 BEGIN INDEX + INCINDEX
INDEX 100 > END . 3

Executing the word sum2 results in 3825 being printed, identical
with the execution of the word SUM, however note how much more work
is involved by not using the DO loop. Note that the <logical-
condition> is popped from the stack by END.

Finally, consider a word named STKPRNT which proceeds down the

stack, printing each number, until a zero is encountered.
H STKPRNT BEGIN . DUP 0= END DROP H

Executing 0 5 9 STKPRNT would result in 9 5 being

printed and the following stack operations:

9 9 5 0
5 5 5 5 5 5
0 0 0 0 0 0
0 5 9 STKPRNT BEGIN . DuUP 0= END
0 1
0 0 0 0 empty
. DUP o= END DROP

(The word BEGIN does not manipulate the stack and is shown above

simply for clarity).

10-8 Feb. 1977

10.3

BEGIN-WHILE-REPEAT LOOPS

Often it is desirable to terminate a loop at some point within the loop
and not at the end (as BEGIN-END does). The control structure
provided for this is
BEGIN <words-1> <logical-condition> WHILE

<words=2> REPEAT
First <words-1> are executed and the <logical-condition> is then evaluated.
If true (non-zero) then <words-2> are executed and REPEAT will transfer
control back to BEGIN and <words-1> are evaluated. |If false (zero)
then WHILE transfers control to the words following REPEAT. As
long as the <logical-condition> is true, <words-1> and <words-2> are executed.
However, as soon as the <logical-condition> is false, the loop is executed
immediately (<words-2> are not executed after WHILE encounters a false).
Graphically, this structure appears as

unconditional branch back

true

et BEG [N = WHILEI-‘—-——b REPEAT ===l

false 1

After reading the next section, one should understand that the BEGIN-WHILE-

REPEAT structure could be implemented as

BEGIN
<words-1> <logical-condition>
IF <words-2> |
ELSE 0 THEN
END
where the 1 and O left on the stack by the IF-THEN-ELSE are simply

flags for END to either terminate or continue looping.

Oct. 1979 10-9

10.4

10-10

IF = THEN -~ ELSE STATEMENT SELECTION

This control structure allows the program flow to branch in one or two
directions depending on the value of a logical condition. This version
of the 1IF statement is more powerful than either the arithmetic IF
or the logical IF in Fortran since an ELSE <clause is provided.

The format of the IF statement is either

<logical-condition> 1IF <true-part> THEN

<logical-condition> IF <true-part> ELSE <false-part> THEN

where the words comprising the <true-part> will be executed only if the
<logical-condition> is true (non-zero), otherwise the words comprising
the <false-part> will be executed (if the ELSE <false-part> clause

is specified).

As an example of a word using the ELSE clause consider a word named
SIGN which prints "P0S' or 'NEG'" on the terminal depending whether

the integer on top of the stack is positive or negative:
: SIGN 0 < IF." NEG'" ELSE." P0OS" THEN

(character output is described in Section 14.1).

As another example consider the following definition of the word

MAX (which was described in Chapter 8):

: MAX OVER ©OVER < IF SWAP THEN DROP

’

The stack operations involved in executing 2 6 MAX are:

Oct. 1979

Oct.

The word
therefore the <true-part> is executed (the word IF
of f the stack).

6
2 2 1
6 6 6 6 6
2 2 2 2 2
MAX OVER OVER < IF
2 2
6 6 6
SWAP THEN DROP

> generates the <logical-condition> of 1 (true) and
pops the 1

The word THEN does not manipulate the stack

and is shown above simply for clarity.

1979

10-11

If we were to execute 5 3 MAX the stack operations would be:

3
5 5 0
3 3 3 3 3
S 5 S S 5
5 3 MAX OVER OVER < IF

THEN DROP

Since the <logical-condition> is 0 (false) and since an ELSE
clause is not specified the word THEN is executed immediately

after the word 1IF.

It is important to note that the IF statement pops the <logical-
condition> off the stack. If you want to preserve the <logical-
condition> for later use then you must DUP it prior to executing
the 1IF. Another important point to note is that the stack must
be the same (i.e. - contain the same number of words) after executing
either the <true-part> or the <false-part>. Exercise 6 at the end

of this chapter illustrates this point.

10-12 Oct. 1979

EXERCISES - CHAPTER 10

1) What values will the loop index take on in each of the following

DO loops?

a) 2900 2898 DO <words> LOOP
b) -5 -4 DO <words> -1 +LDOP
c) -6 -2 DO <words> -2 +L0OOP
d) -2 -3 DO <words> LOOP
e) -2 -3 DO <words> -1 +LOOP
f) 6 18 DO <words> -6 +LOOP
g) 18 6 DO <words> 6 +LDOP
h) 0 -1 DO <words> LOOP

2) Write a word to form the product of the even numbers from 2 to 10
(inclusive) and print the result. Use a DO loop with a positive

increment.

3) Redo exercise 2, this time using a DO loop with a negative

increment.

4) Recode the words INCINDEX and SuUM2 in Section 10.2 using

the definition

0 VARIABLE INDEX

5) Use the colon definition to define the words:

DMAX DMIN D= D< D> DO = DO<L

Oct. 197¢ 10-13

6) Extend the word SIGN given in Section 10.3 to print '"P',
"N'" or "z'" depending whether the integer on top of the

stack is positive, negative or zero.

7) Define a word named EX which prints the top n words of the
stack, non-destructively -- that is, the contents of the stack
must not be destroyed (the printing word . destroys the number

that it prints). For example
88 23 2 EX - .

should print 23 88 65

8) Define a word named VINIT that will initialize each element

in the vector
19 ()DIM VEC

to its subscript value. That is, element 0 should be set to O,

element 1 should be set to 1, ..., element 19 should be set to 19.

9) Define three words named (). 2(). 3(). that will print out
the first n values of a single-word integer vector, a double-
word integer vector and a floating-point vector, respectively
(n is the top word on the staék, the starting address of the
vector is the second word on the stack). Test the word ().

on the vector in the previous probiem.

10) Define a word named 3VBUBSORT that will sort a vector of
floating-point numbers into ascending order using the bubble
sort algorithm. This algorithm is one of the simplest (and
least efficient) techniques for sorting a string of numbers

into order and is defined as follows:

10-14 oct. 1979

To sort the N

M
If

Note that this algorithm uses two (nested)

values X(0), X(1), ..., X(N=1)
2, , N-1

N-1, N-2, ..., L
X(M-1) > X(M)

Then Swap X(M) and X(M-1)

po loops, one

with an increasing loop index and one with a decreasing loop

index.

Assume that the top word on

the stack is N. Use the definitions

5 3()DIM VC

29.7 0 vc F!
-8.2 1 vCc F!
-1.9 2 VC F!
4.5 3 vC F.!
0.52 4 vC F!
-8.3 5 VvCc F!

and then execute
6 3VBUBSORT

Use the word 3().

sorted vector.

Oct. 1979

from the previous problem to print the

10-15

11.

BLOCK 1/0

Using the methods introduced up to this point, to enter a word into the
dictionary we type in the definition through the terminal and the word

is immediately entered into the dictionary. This method has two obvious
disadvantages: (a) we are restricted to one line of terminal input

(72 characters) per definition; (b) if we do not have a hard copy
printout of our terminal input/output and we forget a previously entered
definition we are out of luck as far as recalling the listing of the
definition. Both of these restrictions are overcome by using ''blocks''

as described in this chapter.

FORTH divides the secondary storage (disc or tape) into separate
distinguishable units called blocks. In KPNO Varian FORTH systems (with
a 5 Megabyte disc) each block is identified by its block number, an
integer between 0 and 4895 (inclusive). Each block contains 102k
characters. (Blocks may contain data other than characters however in

this primer we will be interested in blocks of characters only).

Certain blocks are permanently allocated, as shown below:

Block # Usage
0 - 7 Bootstrap & binary loaders
8 - 199 FORTH
200 Resident Loader Block, to be set by the user.
201 - 4895 Available for the user.

Additionally, executing
130 LOAD
will list on the terminal the block allocation within blocks 8-199.

From the block allocation scheme listed above, the user is allowed to do

anything he wants with blocks 200-4895 (but must not modify any of
blocks 0-199).

Oct. 1979 -1

2

Even though a block is nothing more than 1024 consecutive characters,
certain routines (the text editor and the block lister) divide these
1024 characters into 16 lines of 64 characters/line. The purpose of
this arbitrary division is simply to facilitate the reading and printing
of the characters in a block. This division of a block into lines in
no way affects the format of the data on magnetic tape or disc. The
16 lines in a block are referenced as line 1, line 2, ..., line 16.
One common error made by newcomers to FORTH is to assume that there is
a blank between the last column of a given line and the first column
of the next line. This is false as the block consists of 1024
consecutive characters - no special characters are inserted before or
after each line, as the breakdown of a block into lines is for reading

and printing only.

Feb. 1977

12.

12.1

Feb.

TEXT EDITOR

Knowing that a block of secondary storage can contain 1024 characters

of FORTH code we now need a way to efficlently manipulate a block of

characters.

This manipulation is the function of the text editor.

Facility in using the editor is a must in order to proceed onward in

this primer as all examples and exercises from this point on will require

the use of blocks to contain your program code.

SPECIAL CHARACTERS AND TERMINOLOGY

The following special characters will be referred to in the descriptions

that follow:

The

1977

space
ecarriage-return
line-feed

rubout

tab
break

escape

control-N

press the space bar on keyboard.
press the '"'"RETURN'" key on keyboard.
press the "LINE-FEED' key on keyboard.
press the ''RUBOUT' key or the ''DELETE'" key
on keyboard.
press the "CNTL' key and the "' key simultaneously.
press the ''BREAK' key on keyboard.
press the "ESC' key or the '"ALT MODE' key on
the keyboard.
press the "CNTL'" key and the 'N'' key simultaneously.

following symbols will be used to denote frequently used entities:

<block#>

<line#>

text buffer

refers to a block number, which is a single-word

integer in the range 0 through 4895 (inclusive).

refers to a line number, which is a single-word
integer in the range 0 through 16 (inclusive).

is a 64 character buffer used to hold a single line.
Certain editor commands will move a line into
the text buffer and other editor commands may
move the contents of the text buffer into a

certain line of the block.

12

1

12.2 COMMAND DESCRIPTIONS

Describing the editor is a somewhat boring task since all one can do

is verbally define each command - examples are generally impossible to

provide since the editor is such an interactive, terminal-oriented

program. The only way to appreciate this interactiveness and to under-

stand each of the commands below is to try executing each command after

reading its description. This chapter may also bé used later as a

reference when using the editor.

<block#> EDIT will load the editor program into the dictionary,
if it is not already in the dictionary. The
specified block is then read into a core buffer
from secondary storage (tape or disc) and is
listed on the terminal. You may stop this listing
by pressing any terminal key. NOTE: When using the
file system (Section 13.2) the first invocation of
the editor must not be preceded by a <block#>. This
is because after the editor is loaded but before any
block number may be specified, one must first execute
a FILE command to designate which file is to be
edited. A typical invocation of the editor with the

file system would be

EDIT (1oad the editor)
FILE <file-name> (specify which file)
<block#> EDIT (edit a block wi thin the
file)
A will edit the Alternate block. FORTH has two block

buffers in memory and if one wants to transfer some lines

between two blocks, execute

<block#1> EDIT (read block#1 into memory)
<block#2> EDIT (read block#2 into memory)
«.. HL (hold lines from block#2)
A (switch to block#1)
eew IL (insert lines into block#1)
A (switch to block#2)

12-2 Oct. 1979

B will Begin entering lines from the keyboard into
the block being edited, starting at the line
specified by <line#>. FORTH will print each 1ine
number and then wait for you to key in the contents
of the line, terminating each line with a
carriage-return. This process continues until
either line 16 (the last line in the block) is
entered or until you key in a break as the first
character of a line. While keying in each line
the following special characters may be used:

rubout - deletes the preceding character
(backspaces).
break -erases the entire line allowing
you to start the line over again
(this assumes that the break was
keyed in other than as the first
character of a line - when a break
is keyed in as the first character
the Begin mode is terhinated, as
mentioned above).
tab - enters 5 spaces into the line.
Note that each line entered by using the Begin
command replaces the previous contents of that Tline.
Example: 2 B will start replacing at line 2
of the block. If 4 lines are
entered by the operator then
lines 2, 3, 4, & 5 are replaced.
Lines 1 and 6-16 will not be
modified.
<line#> B1 will Begin Inserting lines from the keyboard into
the block being edited, starting after the line
specified by <line#>. This command is similar to
the B command with the following exception:
entering 3 lines with the command '8 B8' will
replace lines 8, 9 & 10 with the new lines entered
by the operator - lines 1-7 and lines 11-16

are not modified and remain intact; entering 3

Oct. 1979 12-3

lines with the conmand '8 BI' will replace
lines 9, 10 & 11 with the new lines entered by the
operator - lines 1-8 are not modified, however,
the contents of old line 9 are now in line 12, the
contents of old line 10 are now in line 13, the
contents of old line 11 are now in line 14, ...,
the contents of old line 13 are now in line 16 and
lines 14, 15 & 16 have been discarded. Thus the
B command replaces lines in a block, overwriting
the previous contents of each line; the BI
command inserts new lines into a block. Since
each block contains exactly 16 lines, when you
insert a new line one of the old lines has to be
removed - the algorithm used by BI is to push
each succeeding line down one line, effectively
pushing line 16 out of the block.

<source-block#> <destination-block#> B-MOVE
Moves the block specified by <source-block#> This
action is identical to the MOVEBLOCKS command
(described in the next section) with <#-of-blocks>
Example: 500 509 B~MOVE

500 5009 L MOVEBLOCKS}
both commands move block 500
to block 509.

<block#> CHANGE Changes the block number of the block currently
being edited to <block#>.
Example: 292 EDIT effectively moves block

208 CHANGE} 292 to block 208.

CLEAR will initialize the block being edited to blanks
(i.e. - the entire block is erased). This command
is used to clear a block prior to entering new
code into the block. A block of all blanks is
considered in use and will be printed on a DOFORTH

listing.

12-4 Oct. 1979

<line#> D Deletes the line specified by <line#>. The original
contents of the line are placed in the text buffer
and may therefore be moved to another line with
the 1 or R commands. All lines following <line#>

are moved up one line and line 16 is filled with blanks.

Examples: 9 D will delete line 9, moving
lines 10-16 into lines 9-15
and line 16 then is filled

with spaces.

9 D will delete line 9 and then
j} insert the original contents

of line 9 between lines 4 & 5.
The net effect of these two
commands is that lines 1-4
are unmodified, line 5 contains
the original contents of line
9, lines 6-9 contain the
original lines 5-8 and 1ines

10-16 are unmodified.

<line#1> <line#2> bpDL Deletes the Lines <line#1> through <line#2>
(inclusive) of the current block being edited.
This command is identical to a string of D
commands. At the completion of this command the
first line in the sequence will be in the text buffer.
Example: 7 D 6 D 5 D
5 7 DL

these two command strings perform the
same function, namely deleting 1ines

5 through 7 of the current block.

<line#> E Erases the line specified by <line#>, filling the
line with blanks. The original contents of the
line are first placed in the text buffer and may
therefore be moved to another line with the 1

or R commands.

Oct. 1979 12-5

Example: 5 E erases line 5 and then inserts
9 1 the original contents of line
5 between lines 9 & 10, moving
lines 10-15 down into lines
11-16. The original contents

of line 16 are lost.

ERASE-CORE Prevents the block currently being edited from
being written onto secondary storage (disc or tape)
by marking both of FORTHs block buffers empty.

This allows you to change your mind after editing

a block, provided you have not specifically

FLUSHed the block onto secondary storage or edited

other blocks since making the changes.

Example: 250 EDIT edits block 250 with the
(changes to| specified changes and
block 250){ then effectively ignores

ERASE—-CORE these changes., After
executing the ERASE-
CORE the contents of
block 250 will be the
same as prior to executing

the 250 EDIT.

FLUSH Forces the writing onto secondary storage (disc or
tape) of both of FORTHs block buffers. Once a
block is written onto secondary storage the
previous contents of the block are lost. Normally
FORTH does not write a block buffer onto secondary
storage until the buffer space is needed for
another purpose, however this command is a way of
guaranteeing that an edited block replaces the
previous contents of the block (in case the system
were to fail between the editing of the block and

FORTHs normal buffer output).

12-6 Feb. 1977

Feb.

<line#> #

<line#1> <line#2>

1977

Holds the line specified by <line#> in the text

buffer. A copy of this line may then be moved to

another line with the I or R commands. Unlike

the D command, the H command does not de lete

the line when it is placed in the text buffer.

Examples: 2 l{> will hold line 2 in the text
buffer.

2 H will hold line 2 in the text

8 R buffer and then replace line 8
with this copy of line 2.
Effectively we have copied

line 2 into line 8.

Holds Lines <line#1> through <line#2> (inclus ive)
of the current block being edited. These lines
may then be moved to another block with the IL
command. This hold is not a true hold as only the
line numbers are remembered and no text buffers
are used. After executing an HL command the
user must not issue the B, BI or M commands
prior to executing the iL command. Also, the
HL, IL commands may not be used to move 1 ines

within a single block,

Example: 258 EDITW will move lines 5, ¢ & 7
5 7 HL of block 258 into lines
261 EDIT 10, 11 & 12 of block 261.
12 D Note that the previous
11 D > contents of lines 10, 11
10 D & 12 are deleted prior to
9 IL y entering the new lines.,

Also note that lines 5, 6
& 7 of block 258 have not
been deleted from block 258.

12-7

12-8

<linef>

<line#>

I

IL

Inserts the contents of the text buffer after the

line specified by <line#>. The lines following

<line#> are each moved down one line and hence

line 16 is lost. <line#> may be 0 in which case

the new line becomes line 1.

Examples: 12 €> will insert the contents of
the text buffer after line
12. The new line becomes
line 13 and the original
lines 13-15 become lines
14-16. Line 16 is lost.

12 D effectively swaps lines 12

12 1 and 13. This is so because
the delete places the original
line 12 in the text buffer and
moves lines 13-16 into lines
12-15. The insert then places
the original line 12 from the
text buffer into line 13,
moving lines 13-15 into lines
14-16. Hence the original
line 13 is now in line 12
(from the delete) and the
original line 12 is now in

line 13 (from the insert).

Inserts the Lines that were held by the most recent
HL command into the current block being edited,
effectively moving a copy of the lines from the
prior block into the current block. The lines in
the current block, following <line#>, are moved

down as required to make room for the new lines.

Feb. 1977

Feb.

<iine#>

1977

M

As usual, extra lines will be lost when moved down
from line 16. After executing an HL command
the user must not issue the B, BI or M
commands prior to executing the 1IL command.
Also, the HL, IL commands may not be used to

move lines within a single block.

List the block being edited. On a CRT terminal
the screen will be erased prior to listing the
block. You may stop the listing by pressing

any terminal key.

Modifies the line specified by <line#>. This
command is probably the most frequently used editor
command therefore acquaintance with this command is
a necessity. Since this command only modifies the
specified line no other lines in the block are
affected. The following buffers are used by the
editor to execute this command: (note: this
command is in no way as complicated to use as it is
to describe).

Reference Line - A copy of the original contents
of the specified line. It is listed when this
command is executed.

Control Line - This line is used to enter the
special input character codes into. On a CRT
terminal this line is directly beneath the
Reference Line, while on a printing terminal
(such as a teletype) this line is coincident
with the Output Line.

Qutput Line - A copy of the final contents
of the modified line being constructed. This

line is built up as you proceed, character by

12

i
{Xo]

character, through the Reference Line and
after normal termination of the ™M command
this line replaces the original contents of

the specified line.

The M command functions by proceeding character
by character through the line, adding, deleting
or replacing characters, building a new copy of
the Tine. The following characters have special
meanings when executing the M command. Any
character not defined below, when keyed in, will

be transferred into the output line.

space - Transfers the next character from the
Reference Line into the Output Line (i.e. -
copies one character from the old version of
the line into the new version being constructed)
and then moves to the next character position

in the Reference Line.

tab - Transfers the next 5 characters from
the Reference Line into the Output Line

(equivalent to typing in 5 spaces).

carriage-return - Transfers the remainder of
the Reference Line into the Output Line. This
terminates the M command and the contents of
the Output Line are then moved into the

specified line of the block.

rubout - Skips over the next character in the
Reference Line, effectively ''deleting'' the

character from the new version of the line.

Control-N - Transfers one blank into the Output
Line without advancing in the Reference Line,
effectively ''adding' a blank into the new

version of the line.

12-10 Feb. 1977

L - (a Control-L followed by a single character).
Transfers characters from the Reference Line into
the Output Line up to but not including the
character c. This action is a handy way to leave-
in all characters up to specific character without
having to continually enter spaces or tabs.

Ke - (a Control-K followed by a single character).
Skips through the Reference Line until the
character c is reached. No characters are
transferred into the Qutput Line. This action
effectively kills all characters, up to the
character c, from the new version of the 1ine.
Control-S - Skips to the next word, transferring the
characters that are skipped into the output line.
Control-D - Deletes to the next word. No characters are
transferred into the Output Line.
break - Aborts the current M command leaving the
original contents of the specified line intact.
The !"'28'' abort message is printed (Appendex B).
line-feed - Starts transferring characters from the key-
board into the Output Line, effectively '"'adding"
characters into the new line being formed. Every
character keyed in is moved to the output with the
exception of the following special characters:
rubout - Deletes the previous character in
the Output Line, effectively '"backspacing"
one character.
break - Deletes the entire accumulated output

line. Additionally, if a

Oct. 1979 12-11

12-12

break is entered as the first
character of the output line then
the M command is aborted,
leaving the original contents of

the specified line intact.

tab - Transfers 5 spaces into the Output
Line (equivalent to typing in
5 spaces).

earriage-return - Terminates the M command

and the contents of the Output Line
are transferred into the specified
line of the block. Note that all
remaining characters in the
Reference Line, following where the
line-feed was keyed in, are effec-

tively deleted.

escape - Terminates the ''add character"
mode that was initiated by the
line-feed, returning ‘'control"!

to the Reference Line.

wWhenever characters are added or deleted, within a line, by using the

M command, the characters that follow in the line will be shifted left

or right. If characters are added to a line then the remaining characters
are shifted right and any characters beyond the 6h4th character position
are lost (they do not get moved into the next line). |If characters are
deleted from a line then the remaining characters are shifted left and
spaces are added through the 6kth character position. This action is
similar to what happens with line 16 when entire lines are added or
deleted from a block. On CRT terminals (as opposed to printing terminals)
a cursor is displayed to help you visualize where you are in either the

Reference Line or the Output Line as you move through a line.

Feb. 1977

N will edit the Next block.

<line#1> <line#2> 0O will perform a character by character logical-
OR of the two lines, printing the result and
leaving it in the text buffer. The logical-0R

of any character with a blank is the character

itself.
P will edit the Previous block.
<line#> R Replaces the line specified by <linef#> with the
contents of the line buffer.
Example: 2 T\ will type line 2 and then
14 R] move the copy of line 2 into

line 14. Lines 2, 15 and 16
are not modified.

<line#> T Types the line specified by <line#> and places the
line in the text buffer.

Example: 2 T will type line 2 and then move
14 1 the copy of line 2 into line
15. The original contents of
line 15 are moved to line 16
and the original contents of
line 16 are lost.

ZERO will initialize the block being edited to zeros
(i.e. - the entire block is erased). A block of
all zeroes is considered an unused block and will
not be printed on a DOFORTH listing., This command
is often used to clear a block that was in use but

is no longer needed.

Oct. 1979 12-13

12.3 BLOCK EDITOR

The text editor described in the preceding section operates on lines of
text and manipulates these lines within a given block or between two
different blocks. This section describes an additional editor, referred
to as the Block Editor, which manipulates entire blocks or groups of
blocks, regardless what is contained within the block, be it characters
or data. Our usage of the block editor will assume that the blocks
contain character data, however, the block editor commands will also
operate on blocks of data.
In order to load the block editor into the dictionary the text editor
must first be loaded into the dictionary. The text editor is loaded by
executing the sequence (refer to Section 12.2)
<block#> EDIT
Following this, one loads the block editor by executing the sequence
199 LOAD
The following commands are then available to manipulate groups of blocks:
<starting-block#> <ending-block#> CLEARBLOCKS
will fill each block from <starting-block#> through <ending-block#>
(inclusive) with blanks. This command is similar to the text
editor CLEAR command.
Example: 281 294 CLEARBLOCKS
will fill block 281 through 294 with blanks.
<block#1> <block#2> <#-of-blocks> EXCHANGE
will exchange (swap) the number of blocks specified by <#-of-
blocks> between the blocks specified by <block#1> and <block#2>.
Example: 500 600 3 EXCHANGE
will exchange blocks 500 and 600, blocks 501 and
601 and blocks 502 and 602.
<source-block#> <destination-block#> INSERT
will insert the block specified by <source-block#> immediately
following the block specified by <destination-block#>. The blocks
starting with <destination-block#> are all moved down one block,
until the first empty block is encountered. (A block is considered
empty if it contains all zeros). |f there are no empty blocks

within 50 blocks of <destination-block#> then no block movement

12-14 Oct. 1979

takes place and a message is printed. |If an empty block is located
then the block.number of this empty block is printed.
Example: 325 408 INSERT
will move the contents of block 325 into block
L08. Assuming that block 412 is the first empty
block following block 408, then the following

block movement will take place:

411 --> 412
Lo --> 41
kog --> 410
Lo8 --> 409
325 --> L4o8

Additionally, the message
BLK USED: 412
will be output.

<source-block#> <destination-block#> <#-of-blocks> MOVEBLOCKS
will move the number of blocks specified by <#-of-blocks> starting
from the block specified by <source-block#> into the blocks
starting at the block specified by <destination-block#>. The
original contents of the destination blocks are overwritten by
the new contents. The blocks are moved from first to last,
therefore no overlap is allowed. This means that if <destination-
block#> minus <source-block#> is less than <#-of-blocks>,
information will be destroyed.
Example: 380 385 3 MOVEBLOCKS
will move block 380 into block 385, block 381 into
block 386, and block 382 into block 387. The
original contents of blocks 380, 381 and 382 are

not modified.

Oct. 1979 12-15

12-16

<starting-block#> <ending-block#> ZEROBLOCKS

will fill each block from <starting-block#> through <ending-

block#> (inclusive) with zeros. This command is similar to the

text editor ZERO command. Note that a block containing all

zeros is considered an empty block.

Example: 220 290 ZEROBLOCKS

will fill blocks 220 through 290 with zeros.

Feb. 1977

A

Switches to the Alternate block,

<line#> B

Begins entering lines.

<line#> BI

Begins Inserting lines.

<$ource-block#> <destination-block#> B~MOVE

Moves the specified block.

<block#> CHANGE

Changes the block#.

CLEAR

Clears the entire block,
Filling it with blanks.

<line#> D

Qpletes the line,

<starting-line#> <ending-line#> DL

Epletes Lines.

<line#> E

Erases the line, filling
it with blanks.

<block#> EDIT

Edits the specified block.

ERASE-CORE

Marks both core buffers
as being empty.

FLUSH

Forces the writing onto secondary
storage of both core buffers.

<line#> H

Holds the line in the text buffer.

<starting-line#> <ending-line#> HL

Holds Lines (for subsequent IL).

<line#> 1

Inserts a line.

<line#> 1IL

Inserts Lines held by
previous HL

L

Lists the block.

{ <line#> ™

| Modifies the line,

N

Switches to the Next block.

<line#1> <linef2> 0

Ors the two lines.

P

Switches to the Eyevious block.

<line#> R

Replaces the line.

ZERD

<line#> T Types the line.
Zeroes the entire block,
filling it with zeroes.

Table 12.1 - Editor Commands

Oct. 1979

12-17

Spuewwoj Jo31p3 %00l - LTl 3|qeL

*$2049Z Yl iM BUO
yoea Bul||l} “SMO0|q 3yl s0.87

SHO0718083Z <Mdo(q-Butpus> <dojq-builielss

*sy20(q Ppalj}id9ds 3yl SIAOK

SHOOTOIAOW <SY20[q-JO-#> <#320|G-UOIIRUIISIP> <#YD0[G-324N0S>

*3o0(q paljloads a2yl sidasu| LH3SNI <00 q-uojleuIlsap> <#}20|q-224N0S>
*s)20|q

paljioads syl (sdems) sebueyoxy IONVHOX3 <S$M201q-JO-#> <ZH001q9> <|#400|q>
*syuUe|q Yiim 3uo

yoea Buyyll4 ¢s)00[q @Yl sdea|) SMO07188VID <#qoojg-Buipuas <#yd0|q-buiiielss

*SpAOM 1031 1Pa X20[q 3yl Speo]

avan 661

1977

Feb.

12-18

13. PROGRAM STRUCTURE

Knowing that we may store our program code in a block on secondary
storage, we are now ready to write some longer programs, utilizing
this feature.

13.1 BLOCK ORIENTED PROGRAMS

If you have a group of definitions in a disc block you must LOAD the
block in order to enter the definitions into the dictionary. This is

accomplished by executing the sequence
<block#> LOAD

where <block#> is a single-word integer value specifying which block of
secondary storage is to be loaded. The loading sequence starts with the
first character in the specified block and continues through the block

until either of the following words is encountered:

3 S - terminates loading of the current block and all
characters that follow the ;S in the block

are ignored.

CONTINUED - terminates loading of the current block but
continues on to load the block whose block #
is on top of the stack. All characters that
follow the CONTINUED in the block are
ignored.

—> - terminates loading of the current block and
continues on to load the next block. All
characters that follow --> in the block are
ignored. Refer to the end of this section for
more detail converning the use of ——>

Once again, some examples are the easiest way to see what is happening.

Oct. 1979 13-1

INPUT SEQUENCE BLOCK CONTENTS BLOCKS LOADED

Block 250
250 LOAD 250
STOP | ;S
Block 300
STOP | ;S
Block 301
300 LOAD 300,
301 LOAD 301,
302 LOAD STOP |5 S 302
Block 302
STOP |5 S
Block 300
301 CONTINUED
Block 301
300,
300 LDAD 301,
302 CONTINUED 302
Block 302
STOP | ;S

13-2 Feb. 1977

Feb.

Notice how the last two examples perform identical functions, that is
to load blocks 300, 301 and 302. The final example (using CONTINUED)
is preferable since it requires only one LOAD to be keyed in and

executed.

Now assume in the final example you wish to insert some code between
blocks 300 and 301 (that is, the words to be entered into the dictionary
must logically be loaded after block 300 has been loaded but before

block 301 is loaded). One method to accomplish this is as follows:

Block 300

303 CONTINUED

Block 301

302 CONTINUED

Block 302
;S
Block 303

new block of code

301 CONTINUED

1

1977 13

3

13-4

This method will work perfectly well, however the problem now is that
the new code in block 303 is logically out of sequence since it should
really appear between blocks 300 and 301. A few additions of this form

and the program quickly becomes a mess!

To avoid this problem lets move the contents of block 302 to block 303
and then move the contents of block 301 to block 302. This then frees
block 301 for the new code. We can use the block editor to move blocks

301 and 302 by executing

302 303 B—-MOVE
301 302 'B-MOVE

which will move the two blocks as desired. What we now have is:

Block 300

301 CONTINUED

Block 301

available for new block of code

Block 302

previous contents of block 301

302 CONTINUED

Block 303

previous contents of block 302

;S

Oct. 1979

Note however, that in addition to entering the new code into
block 301, we must also edit the '302 CONTINUED' in block 302

to '*301 CONTINUED' since we moved block 301 into block 302.

Finally, as a solution to this problem (the problem of having to edit
the block# preceding CONTINUED), we can describe a word named
+BLOCK which calculates an absolute block number given a relative

block number:

In block# The sequence Is identical to
300 1 +BLOCK CONTINUED 301 CONTINUED
420 2 +BLOCK CONTINUED 422 CONTINUED
500 -3 +BLOCK CONTINUED 497 CONTINUED
300 -1 +BLOCK CONTINUED 299 CONTINUED

As the examples show, the single-word integer value preceding the word
+BLOCK is added to the current block number yielding a single-word
integer value absolute block number. (A block number such as 300, 420,
etc. is called absolute since it refers to a specific block - a block
number is called relative if it refers to a block in a specific location

relative to the current block). The sequence
301 CONTINUED

is an absolute block reference since it refers to block 301 specifically.

The sequence
1 1BLOCK CONTINUED

is a relative block reference since the block referred to depends on
which block the sequence '1 +BLOCK CONTINUED' appears. The
sequence '1 +BLOCK CONTINUED', if found in block 350, refers

to absolute block 351; however if found in block 407, refers to absolute
block 408.

Oct. 1979 1375

13-6

Had a relative block reference been used in blocks 300 and 301 of the
example we would not have to edit the '302 CONTINUED' as

mentioned previously. Thus, the original appearance of the example

should have been

Block 300

1 +BLOCK CONTINUED
(Block 301

1 *BLOCK CONTINUED

Block 302

After moving block 302 into 303 and block 301 into 302 we need only edit
in the new code into block 301 and then terminate block 301 wi th

1 +BLOCK CONTINUED

and we're all set. No other blocks need be modified.

The purpose of this lengthy discussion has been to explain the logic and
usefulness behind the provided block structure. |t would have been
shorter to simply describe the +BLOCK word at the beginning, however
it is more instructive to first examine the alternatives and see just
why the final technique is the best. This discovery, examination and

comparison of alternative techniques is the essence of programming.

Oct. 1979

The stack interactions of the word +BLOCK are very simple. Again

consider the sequence
1 +8LOCK CONTINUED

being executed in block 420:

1 421

empty

1 + BLOCK CONTINUED

The word +BLOCK simply adds the single-word integer on top of the

stack to the current block number, leaving the result on top of the stack.

Now that we know how to link together a sequence of blocks into a program
what are the contents of the blocks? The format of each program block

is largely (if not entirely) a matter of individual preference. The
following format is used by the author and should be regarded as one

possible format:

1) Line 1 contains the base in which all numeric quantities are
specified (decimal or octal, specified by the FORTH words DECIMAL

or OCTAL) . WNever assume that the base is set to what you want!

2) Following the base specification, the remainder of Line 1 is used to
contain a comment which briefly describes the function of the code
appearing in the block. A comment in FORTH is denoted by a left
paren, followéd by one or more spaces, followed by the comment,
terminated by a right paren (this closing paren need not be preceded
by a space). Thus to comment that a block contains hour angle

calculations, the FORTH sequence would be
(HOUR ANGLE CALCULATIONS)

3) Lines 2 through 15 contain the code.

Oct. 1979 13-7

13

8

L) Line 16 contains the sequence
1 +8L0OCK CONTINUED

if there are more program blocks to follow, otherwise it contains

the word
3 S
to terminate the loading.

5) At the right margin of Line 16 one should put the date on which the
block was last modified and the initials of the person making the
modifications. This allows another person to see when the block was
last changed and by whom. Note that since these characters appear
after the CONTINUED or the ;s they are ignored during
loading and therefore are effectively comments. For example, if the

block was last modified by the author on February 30, 1976 one

could write
30FEB76 WRS

to specify the date and the person.

Now consider a sample block, say block 503, as listed by the editor:

1. DECIMAL (HOUR ANGLE CALCULATIONS)

2.

3.

15.

16. 1 +BLOCK CONTINUED 30FEB76 WRS

(Lines 2 through 15 would contain the program code.)

Oct. 1979

Summing up the recommended program structure:

1) Have each block load its successor with a relative CONTINUED,

that is, for example
1 +BLOCK CONTINUED
2) Terminate the final block only with ;s
3) The entire program is then loaded by executing
<starting-block#> LOAD

where <starting-block#> is the absolute block number of the first

program block.

As an alternative to specifying the absolute block number of the first
block in a program, one can define a new word to be entered into the
dictionary such that when this word is executed a specified block will
be loaded. The word LOADER is used to define the new word and the

format of this definition is
<block#> LOADER <name>

where <name> is the user assigned name (recognized as usual, by its first

three characters and count). For example, instead of executing
300 LOAD

in the previous example, to load blocks 300, 301, 302 and 303 we can
define the word PROG as follows

300 LOADER PROG

and then simply execute the word PROG to load the four blocks. This
technique has the advantage that one now remembers a user defined name,

instead of a (possibly meaningless) block number.

Oct. 1979 13-9

The word LOAD starts loading with the first character of line 1 of
a block and if one wishes to start loading with the first character of any
line of a block, the word LINELOAD is available:
<line#> <block#> LINELODAD
As with the word L0AD, the loading of a block with LINELOAD terminates

when ;S CONTINUED or —> is encountered.

One should understand that the word —-> is equivalent to the sequence
1 +BLOCK CONTINUED

The difference is that --—> is a compiler directive which will be executed
during the compilation of a colon definition. This means that one is able to
extend a colon definition from one block to the next by placing the word

-—> as the final word in a block. This is not too frequent a requirement
(if you write a colon definition that extends over a block, perhaps the
definition should be broken into two or more words) however the facility is
provided. In general, ——> is preferred to 'i1 +BLOCK CONTINUED'
because it is a single word (the latter is three words, each which must be
executed) plus it requires fewer characters to be keyed in (hence less chance
for typing mistakes). The sequence '<value> +BLOCK CONTINUED'

should be used mainly when <value> is not equal to one.

13-10 Oct. 1979

13.2 FILE SYSTEM

A rudimentary file system is provided by KPNO Varian FORTH which allows
one to allocate disc blocks into files. Use of the file system simpli-
fies the combining of separate programs into a larger program by not

forcing one to think in terms of absolute disc blocks.

A file is a sequential group of one or more disc blocks and every file

has a name which is identified by its first three characters and count.

A directory of all files is maintained on disc and for every file on disc,
the directory contains the file name, absolute starting block number, and
absolute ending block number (actually the ending block number plus one).
As in FORTH, the file directory is searched backwards, therefore, if two
files having the same name are both in the directory, only the newer file
is accessible. A group of commands to manipulate files are provided by

a file called FILEMAN (the file manager).

To load a file, one executes:

LOADFILE <name>
which LOADs the first block of the file. A file may LOADFILE other
files and this nesting may go to a level of ten. All blocks within a file
are numbered relative to the first block of a file, starting with zero.
For example, a 4 block file would consist of blocks 0, 1, 2, and 3. In order
to load block 3 from block 1 one could use

2 +BLOCK LOAD
Absolute block numbers must never be used in a file (unless one is refer-
encing basic FORTH which will always reside in absolute blocks 8-199).
The last line of block 0 of every file should contain a comment descriping
the file and the first 40 characters of this comment are printed by vari-
ous file manager utilities in order to provide more information on the

contents of a file than the file name alone provides.

Oct. 1979 13-11

In order to edit a file, one first executes
EDIT
which loads the editor words into the dictionary, followed by
FILE < name>
to specify which file is to be edited.
Finally
<relative-block#> EDIT
will edit any block within the file. If one then wishes to edit some
other file simply execute
FILE <hame>
<relative-block#> EDIT
In order to print a file on the lineprinter, one first executes
LOADFILE FPRINT
which loads the lineprinter words and a modified BLOCKPRINT utility

into the dictionary. -FPRINT discards these words.

To print all non-zero blocks of a file, one executes
FPR < name>
To specify only certain blocks of a file to be printed, one executes

FILE < name>
m n BLOCKPRINT

which will print the relative blocks m through n inclusive of the specified
file.

To print another file, simply re-execute either the FPR command or the

FILE and BLOCKPRINT commands with the new filename.

The file manager is loaded by executing

LOADFILE FILEMAN
and may be discarded by executing —-FILEMAN. The following file handling
words are available after loading FILEMAN

13-12 Oct. 1979

FCHANGE <namel> <name2> Rename the file <namel> as <name2>,.

FCOMPARE <hame> <name> specifies an existing disc file
and any file on a file storage tape is
compared with the disc file. The oper-
ator is asked which file on tape is to
be compared. The relative block numbers

of any non-equal blocks are printed.

FCOPY <name> Copy a sequence of blocks between the
specified file and a standard FORTH tape.
The operator is asked whether the source
is tape or disc and the absolute starting
block number on tape. The number of
blocks transferred equals the length of
the file. |If the destination is disc,
then the disc file is zeroed before the

transfer starts.

<#blocks> FCREATE <name> Create a new file of the specified
length. There is no check made to see if
a file of the same name (first three
characters and count) already exists. The
disc area assigned to the file is neither
cleared nor zeroed, hence one must assume

the initial contents to be garbage.

FDELETE <name> Delete the specified file from the direc-
tory. The disc space used by the file may
be reused later by another file of the same
or smaller size. |If the files on either side
of this file are empty (i.e. - were previously
FDELETED) then the areas are combined in
order to give the largest possible empty

region.

Oct. 1979 13-13

FDUMP < name> Dump the specified file from disc onto a
file storage tape. The file is appended onto
the end of the file storage tape. Preceding
the file on tape is a header block specifying
the name and size of the file. The file
may later be loaded onto disc by FLOAD
~or LOADALL.

<n> FEXTEND <name> Extend the length of the specified file by
n blocks. A new file is created with the
following characteristics: it retains the
original filename, its length equals the sum
of its original length plus n, all blocks
are zeroed, all blocks from the original
file are then transferred to this new file.
The original file is then designated as
EMPTY. If there is insufficient space
available for the new extended file, the

message NO SPACE will be printed.

FFREE Print the number of free unused blocks

located after the directory.

FINITIALIZE Initialize a file directory. All files except

the file manager are deleted.

13-14 oct. 1979

Oct.

FLIMIT

FLIST

FLOAD < nhame>

FMOVE < name>

1979

Set the upper limit block number for file
storage. The operator is asked for the
upper block number.

List the entire disc directory on the
terminal. For each file in the directory
the file name, starting and ending absolute
block numbers, length (in blocks), and the
first 40 characters of the last line of
block 0 of the file are listed. Any unused
regions (where one or more files have been
FDELETEd) are listed with a name of EMPTY.
In order to stop the listing before the
terminal screen fills up type Control-S

type Control-Q to resume listing.

<name> specifies an existing disc file, and
any file on a file storage tape may be loaded
from tape into the disc file. The operator
is asked which file on tape is to be loaded.
If the lengths of the files on disc and tape
are not equal, the number of blocks moved

equals the shorter length.

Move a sequence of blocks from an absolute
location on disc into the specified file.

The starting absolute block number of the

source blocks on disc is requested and the
number of blocks transferred equals the

length of the file.

13-15

FSQUEEZE

FWHERE <name>

FZERO < name>

DUMPALL

LOADALL

FILE < name>
<relative block#> LIST

13-16

Eliminate all imbedded empty files within
the directory, if any occur, by squeezing
user-filled files into consecutive block
locations. All free unused blocks now re-
side in contiguous locations following the

user-filled files.

Print the absolute starting and ending

block numbers of the specified file.

Zero all blocks contained in the specified
file.

Dump all non-empty files from disc onto
a file storage tape, and then compare each
block on tape to its corresponding block on

disc.

Load all files from a file storage tape
onto disc. Each file header on tape is
examined and if a file of the same name
exists on the disc, the file is loaded

from tape onto disc (overwriting the previ-
ous contents of the disc file). |If a file
of the same name does not exist on disc,
the file is created and loaded from tape.
If there is insufficient room on disc for a

file, the file is skipped on the tape.

Specify a file to be listed and list the con-

tents of the specified block on the terminal.

Oct. 1979

NEWTAPE

SAVEFILES

TLIST

Oct.

1979

Initialize a new magnetic tape which is

to be used for file storage.

Write all blocks, from block 0 to the

last block of the last directory file, to

a tape and compare these blocks with their
corresponding blocks on disc. It allows one
to change the comment in the tape header, and
it prints the final record number and final
block number written to the tape. A tape
generated by this word is a '"boot tape'

which may be loaded onto any system and run
(Chapter 3).

Read a file storage tape from beginning to
end, listing in order every file that is on
the tape (similar format to FLIST). In
order to stop the listing before the terminal
screen fills up type Control-S type Control-Q

to resume listing.

13-17

13.3 OVERLAYS

FORTH applications for which core-memory space is at a premium and run-
time reloading exacts prohibitive time overhead will benefit from the
use of disc overlays. An overlay is a section of pre-compiled diction-
ary stored on disc, which may be loaded directly into a reserved section
of dictionary (an "overlay-area'') in memory. Any number of overlays may
be prepared for loading into a given overlay-area. Also, any number of
overlay-areas may be defined, subject to memory limitation. Optional
paging is available for overlays containing data to be modified and
retained throughout overlay operations. To establish an overlay-area,
use the sequence

<size> O-DEFINE <area-hame>
The total length in words of the overlay-area is specified by <size>.
<area-name> becomes the identifier of the overlay-area, and is compiled
as the first word in the overlay-area. As usual, only the first three
characters and count identify <area-name>. At this point the dictionary
pointer is advanced to the end of the overlay-area. Usual dictionary
operations may proceed, however, words defined after this point will not

be accessible from overlays compiled into the preceeding area.

To create a new overlay for any given overlay-area, simply enter the name
of the area. Use of the user defined word

<area-name>
causes dictionary linkages to be switched into the named overlay-area.
Words subsequently defined become part of the new overlay. The only
definitions accessible within an overlay are those made within the overlay
itself and those made prior to definition of the overlay-area. These may
include words within previously defined overlay-areas. To assist one in
adjusting the lengths of overlays to fall within the defined area, the word

?LEFT

will push onto the stack the number of memory cells still available in the

overlay-area.

13-18 Oct. 1979

When the overlay is complete it must be transferred to disc. The sequence
<block#>' 0-SAVE < overlay-name>
accompl ishes this, while also resetting linkages into the common dictionary.
The <overlay-name> becomes an entry in the common dictionary which is used
in a special manner to access the overlay. The <block#> is the first block
at which the overlay will be stored. Overlays greater than 512 words in
length will be written into sequential blocks as required, 512 words per
block. Partial blocks are zero-filled. Alternatively, an overlay may be
saved without specifying a particular block number for each overlay. The
VARIABLE 0O-BLK may be set to the starting block of a general disk area
for overlay storage. The sequence
A—-SAVE <overlay-name>
works like O-SAVE, except that the block number is taken from the
variable 0-BLK. After the overlay is transferred to disc, 0-BLK
is updated to the next available block number automatically. |{f the
allotted size of an overlay is exceeded, attempts to save it will result in the
message
n O -FLOW <overlay-name> ?2Q
where n is the number of words remaining. The overlay-area itself and all

subsequent dictionary entries are deleted.

The words defined within an overlay are accessible only when that overlay
is in memory. An overlay may be explicitly loaded into core with the
structure:
<overlay-name> (O-LOAD
However, for operations making extensive use of words defined within
overlays, it may be easier to use implicit overlay-loading. The sequence
<overtay-name> INCLUDES <word>
creates an external entry which automatically insures that <word> is available
when required. <word> must be the identifier of a word already defined in the
named overlay. Except for timing considerations and recognition that the
originally defined <word> is no longer directly accessible, subsequent
references to <word> may be made as if it was part of the common dictionary
in core memory. Note that the word p-LOAD is superfluous to this scheme;
it need never be used. The word INCLUDES insures that the proper overlay

is loaded for compilation as well as for execution.

Oct. 1979 13-19

A typical usage of the overlays would be as follows:

- definitions for the common dictionary -

1024 O-DEFINE OVAREA (1024 words = 2 blocks/overlay)
20 +BLOCK O0-BLK ! (starting block# on disc)
OVAREA

- definitions to go into overlay #1 -
A—-SAVE 10V

OVAREA

- definitions to go into overlay #2 -
A-SAVE 20V

OVAREA

- definitions to go into overlay #3 -
A-SAVE 30V

- definitions for the common dictionary -

In this example the overlay 10V will be stored in the first two blocks of
the overlay region on disc, 20v in the next two blocks and 30V in the
next two. In order to execute some words defined within 20V one must

first execute
20V 0O-LOAD
Normally, variables or data defined within an overlay are reset to their
initial states each time the overlay is reloaded into core memory. However,
a simple scheme has been implemented which allows variables to survive the
overlay reloading process. After an overlay has been defined and saved,
setting the precedence bit of its area-name using the sequence
IMP <area-name>
will define it as a variable overlay. The precedence bit for a variable
overlay can be properly set only when the following three conditions are
met:
1. The overlay has already been placed on disc via
0O-SAVE or A-SAVE.
2. The designated overlay is currently loaded into its core overlay-
area.
3. Subsequent use of the overlay-area causes a different overlay to
be loaded before any any dictionary is compiled into the area.
A brief description of the action of the overlay precedence bit may prove
helpful: This bit is examined before a new overlay is brought into memory;

if set, the current overlay is first re-written on disc. The precedence

13-20 Oct. 1979

bit is not examined before new dictionary is compiled into an overlay;
consequently a variable overlay that happens to be loaded prior to compi-
lation is not re-written on disc. The precedence bit of an overlay-area
is cleared by either SAVE operation and so cannot be set during com-
pilation. Although the <area-name> not the <overlay-name> is used to de-
fine a variable overlay, only the specifically designated overlay is affected.
Remember, IMP is a toggle function. Once set the precedence bit will
remain set until explicitly reset by another 1IMP.

Some helpful hints concerning the use of overlays:

The useful length of an overlay area is 9 words less than the total size
of the area.

Do not attempt to write overlays past absolute block 2447.

Exceedingly long names or numeric strings (greater than 15 characters)
entered at or near the end of the overlay-area could (conceivably, but
unlikely) extend into the common dictionary during compilation and result

in an O-FLOW error.

Do not attempt to FORGET an overlay-area name! The FORGET word
does not handle overlay linkages properly. You may, however, FORGET

any word ahead of an overlay-area and so delete the overlay-area as well.

Names of words which are not executed from outside an overlay may be freely
duplicated in other overlays. However, it is inadvisable to duplicate names

which are to be externally referenced.

Words defined in one overlay may be referenced from within a subsequently
defined overlay. This could be a powerful tool, but must be used with

care: |If an overlay contains any words referenced by subsequent overlays,
any modifications of it must be followed by re-compilation of the referencing

overlays.

pon't forget that a small overlay defined for a large overlay-area requires

the full disc space of the larger area.

Explicit or implicit loading of an overlay from disc does not actually result

in a disc transfer if the requested overlay is already core-resident.

Oct. 1979 13-21

13.4 VOCABULARIES

A vocabulary is a logical subset of the dictionary. Basic FORTH includes

three vocabularies:

FORTH - the set of words comprising basic FORTH;
ASSEMBLER ~— the set of words which create machine code;
EDITOR - the set of words which create and modify source blocks.

A vocabulary may be used in two distinct ways:
1) A place to look for existing words in the dictionary

- dictionary searches begin in the CONTEXT vocabulary.

2) A place to put new words into the dictionary - new words are

placed in the CURRENT vocabulary.

The end of one vocabulary may point to another vocabulary and this is
referred to a ‘'chaining'. Normally, both the ASSEMBLER vocabulary and
the EDITOR vocabulary are chained to the FORTH vocabulary. The logical

structure is then

end of the ASSEMBLER
head of the ASSEMBLER
ASSEMBLER vocabulary At)

vocabular

end of FORTH

head of FORTH head of the EDITOR
end of the EDITOR

direction of dictionary searches

The head of a vocabulary is the last word entered into that vocabulary and
the end is the first word entered (recall that all dictionary searches in
FORTH start at the most recent word and proceed backwards). It is important
to note that the structure shown above is the '"logical' structure of the
dictionary - the words that comprise any given vocabulary need not reside

in sequential dictionary locations. Every dictionary entry has a link

that points to the previous word in the vocabulary and this link field

converts the physical dictionary structure into its logical vocabulary tree.

13-22 Oct. 1979

To specify which vocabulary is to be searched for existing entries

(the CONTEXT vocabulary) simply execute the name of the vocabulary.
Executing FORTH will cause only the FORTH vocabulary to be searched.
Executing ASSEMBLER causes the ASSEMBLER vocabulary to be searched
first and if the word is not found then the search automatically continues
on to the FORTH vocabulary (since ASSEMBLER is chained to FORTH). In

this case the EDITOR vocabulary is not searched. Similarly, if EDITOR
is executed then the EDITOR vocabulary followed by the FORTH vocabulary
will be searched. The ASSEMBLER vocabulary is not searched.

B specify which vocabulary is to receive new definitions (the CURRENT
wcabulary) execute

<name> DEFINITIOCNS
where <name> is the name of a previously defined vocabulary. A new
vocabulary is defined by executing

VOCABULARY <name>
The dictionary entry for <name> is entered into whatever vocabulary is
currently receiving definitions, not into the new vocabulary being
created. Therefore, to keep newly defined vocabularies generally
accessible, the sequence

FORTH DEFINITIONS

should precede any new vocabulary definition.

To facilitate vocabulary control in basic FORTH, automatic context switching
has been built into some basic words. The EDITOR vocabulary is automatically
selected by the sequence ‘'<block#> EDIT'. The words that begin machine
code definitions (CODE, SUBROUTINE, ;CODE, ORCx and !CODE)
automatically execute ASSIMBLER to start dictionary searching in the
ASSEMBLER vocabulary. The words that begin a colon definition (: :ORX
and !:) automatically force dictionary searching to begin in the same
voabulary that will receive the new definition.
The sequence

<pname> VLIST
may be executed to list all the entries in a given vocabulary. Note that
if the vocabulary is chained to another vocabulary then the listing will

automatically continue with the chained vocabulary.

Oct. 1979 13-23

Each Vocabulary name is a compiler directive; that is, a word which is
automatically executed when it appears within a colon-definition. This
feature allows access to specialized vocabularies by simply including the
Vocabulary-name within a definition. For example, a colon-definition
being compiled into Vocabulary V3 needs a word that was defined in V2,
Within the definition, the sequence,

t .. . V2 <word> v3 . . . 3
performs the requisite switching, then returns to the current vocabulary.

Only the address of <word> is actually compiled.

A unique variable must be provided to keep track of the last word in each
vocabulary. This special "head" is created as part of each Vocabulary-name
and is updated as new words are added to the Vocabulary. It is accessed

(indirectly) through the VARIABLES CURRENT and CONTEXT:

Dictionary searches begin in the ''context' vocabulary: Executing a Vocabu-

lary-name makes CONTEXT point to the unique Uhead'' for that Vocabulary.

New words are placed in the "current'' vocabulary: Executing the word
DEFINITIONS sets CURRENT, making new words go into the last-named

Vocabulary.

A vocabulary normally has access only to those words available when it was
defined. By way of example, consider the sequence:

FORTH DEFINITIONS

VOCABULARY V1 V1 DEFINITIONS <words for Vi>

VOCABULARY V2 V2 DEFINITIONS <words for V2>
which results in a logical structure like:

FORTH 0

\ V1 0
‘\ V2 0

and a physical dictionary structure:
[FORTH}+{ vijeqv2]

Definitions subsequently added to VI are inaccessable to subsequent

additions in V2. A continuation of the above sequence:
v1 DEFINITIONS <words for V1'>
V2 DEFINITIONS <words for V2'>
creates extensions to the original vocabularies that we shall refer to as

"dialects'.

13-24 Oct. 1979

FORTH o

V] vi'

R V2 . V2"

FORTH Vi V2 V! v2!

As illustrated in the diagram of the resulting structures, Dialect V2'

does not have access to Dialect V1'.

The word CHAIN may be used to couple one vocabulary to future extensions

of another. |In the example, the sequence:
ve DEFINITIONS CHAIN V1

will modify the links between vocabularies such that all words subsequently

defined in V1 will be available to V2.

Note that since V1 is not chained to FORTH, if we subsequently create

more

FORTH DEFINITIONS e

the resultant structure:

FORTH FORTH
d

Vi VIt

o
\ V2 o V2! R

[TFORTH Jue—i VI L_l V2 Vi? |..| V2' | / FORTH |
o\ m

does not allow either dialect of VI or V2 to access the new FORTH' definitions.

Oct. 1979 13-25

A variation on the preceeding vocabulary-creation sequences illustrates the
flexibility of chaining techniques. We create new vocabularies as before,

but with the first one chained to FORTH, thusly:

FORTH DEFINITIONS

VOCABULARY V3 V3 DEFINITIONS CHAIN FORTH <words for V3>
VOCABULARY V4 V4 DEFINITIONS <words for Vi>

We then define additional dialects:

FORTH DEFINITIONS <words for FORTH'>
V3 DEFINITIONS <words for V3'>
V4 DEFINITIONS <words for V4'>

thereby creating a vocabulary structure:

. FORTH - FORTH

which allows all V3 and V4 dialects access to all of FORTH while isolating

the words in dialect V3' from vocabulary Vk.

13-26 , Oct.

1979

14, TERMINAL 1/0

Terminal 1/0 involves the input and output of both numbers and

character strings between the program and the operator. The output of
character strings, the input of numbers and the output of numbers are
each described separately. The input of character strings is somewhat

complicated and is not discussed in this primer.

14.1 CHARACTER OUTPUT

The output of a character string is accomplished by preceding the string

with the two character sequence . and then terminating the string

with a quote mark. The sequence .'" is a FORTH word (Section k.1) and
must therefore be followed by a space. The final quote need not be preceded

by a space. Consider the following examples:

FORTH Character String Will be Printed as # of Characters
J' HELLOYM HELLO 5
J' HELLO" HELLO 6
.'' START MOTOR' START MOTOR 11
Joxn Loy XY I, 1
JUox! oy X Y 1, 2

The important point to note in these examples is that any spaces in
addition to the one required space (that follows the .'') are considered

as part of the character string.

Special characters (i.e. - the non-printing characters such as carriage-
return, line-feed, bell, etc.) may also be included in the character
string. A list of all special characters available in the ASCI]
character set is given in Appendix A. One frequent use of these special
characters is to include a BELL character (Control-G) in a string that
is to be printed on a CRT terminal to alert the operator that a message

has been printed.

Oct. 1979 14-1

14.2

14-2

To assist in the formatting of character strings for output three
additional words are defined in FORTH:

SPACE - will print a single space.

<spaces> SPACES - will print a string of spaces.

CR - will print a carriage-return.
For example, the sequence

CR JUXY = 2' CR SPACE Z = 5n

will print Xy = 2
Z = 5

t— column 1 of terminal

A1l character output described in this Section can be executed as shown
or placed within a colon definition. For example, the word PRN,

defined as
: PRN CR ."" xy = 2" CR SsSPACE ." z = 5" 3

and when executed will produce the same output as shown above.

NUMERIC INPUT

Numeric input involves the reading in of numbers and the conversion into
the appropriate data type (single-word integer, double-word integer or

floating-point number). FORTH provides three words to accomplish this

input:

SASK Reads a single-word integer and pushes its value onto
the stack. The number must not contain a decimal point.

DASK Reads a double-word integer and pushes its value onto
the stack. The number must contain a comma.

FASK Reads a floating-point number ahd pushes its value onto

the stack. The number must contain a decimal point.

Oct. 1979

If there is an error in the number entered (for example a non-digit

detected) the message
? RETRY #

will be output and FORTH will wait for the number to be re-entered. Addi-
tionally, if the error is due to either a single-word integer being entered
with a decimal point or a double-word integer or floating-point number being
entered without a decimal point, one of the following messages will be out-

put:

NO . ALLOWED
MUST CONTAIN .

These three asking words do not inform the operator that they are waiting
for a number to be input - this must be done by the program. For example,

consider the word ?TEMP that inputs a temperature:

0 VARIABLE TEMP
: ?2TEMP .M ENTER TEMP (DEG. C)" SASK TEMP ! CR

There must be no digits to the right of the comma in a double-word integer
while a floating-point number will usually contain digits to the right of
the decimal point. Floating-point numbers input by the work FASK may

be entered as a fraction to a given power, for example 0.5E2 is the same

as 50.0.

Oct. 1979 14.3

14.3 NUMERIC OUTPUT

Numeric output involves the printing of a number on the stack in some

specified format. We have already encountered three words used for this
purpose: . (to print single-word integers), D. (to print double-word
integers) and F. (to print floating-point numbers). This section will

expand on these words to provide additional output capabilities.

To summarize the words that we will describe in this section:

sequence outputs

<value> ., single-word integer, free format
<address> ? single-word integer, free format
<value> B, single-word integer, 16 binary digits
<DW=-value> D, double-word integer

<FP-value> E. floating-point with exponent
<address> E? floating-point with exponent
<FP-value> F, floating-point without exponent
<address> F? floating-point without exponent
<FP-value> G. generalized floating-point
<address> G? generalized floating-point

<value> H. single-word integer, hexadecimal
<value> <field> 1I. single-word integer

<value> <field> <#places> N. single-word integer

<value> 0, single-word integer, 6 octal digits
<value> s, " single-word integer

<value> U, single-word integer, unsigned

Note - as with all FORTH words, these words, after printing the number on top

of the stack, will pop the number from the stack.

The word . is the simplest - the single-word integer value on top of the
stack is printed using the minimum field width required. The number is first
preceded by a space. For example, the integer 25 requires a field width of two

positions and the integer -25 requires a field width of three positions.

14-4 Oct. 1979

In order to gain more control over the printing of single-word integers, the
word S. must be used. The user must set the VARIABLE FLD to the
minimum field width desired. |f the number requires more positions than
specified, then the number will exceed the specified field width. There is

no preceding space printed by this word. If FLD s set to O then free
format is used (minimum field width). Additionally, the VARIABLE DPL
controls the number of digits to be printed to the right of the decimal point.
A value of -1 specifies that the decimal point is not to be printed. Executing
the word FREE will set FLD to 0 and DPL to -1 (minimum field width and

no decimal point). The word FREE is defined as
0 FLD -1 DPL 2SET FREE
and the definition of . then becomes
. FREE SPACE S. H
The sequence

3 FLD : (SET FIELD WIDTH TO 3) -1 DPL !

CR 5 S. CR 29 S. CR -58 S. CR 2.09 S. CR
will output 5
29
-58
2109

column 1 of terminal

Also, the sequence

2 FLD ! -1 DPL !
5 S. 1 S. 28 S.
will output 5 128 . slince there is no space preceding each number.

The sequence
5 . 1 . 28 .

will output 5 1 28 since each number is preceded by a space.
Note that when outputting a sequence of numbers FLD and DPL need only be

set once and will remain in effect until modified again.

The words 0. B. and H. are used to print a single-word integer in octal,

binary and hexadecimal respectively. The sequence

Oct. 1979 14

5

<value> <field-width> 1.

allows one to print a single-word integer and specify the <field-width> on
the stack. If one wishes to print a single-word integer with a decimal point,

the sequence
<value> <field-width> <#places> N.

may be used, where <fplaces> is the number of digits to be printed to the right

of the decimal point. The words 1. and N. are defined in FORTH as

: N. DPL ! FLD ! s.

e

H I. -1 N. H

The word U. is used to print a single-word integer as an unsigned 16-bit

number.

The word D. s similar to S. and is used to output double-word integers.

The user must set the VARIABLE FLD to the minimum field width desired and
if the number requires more positions than specified then it will exceed the
field width. There is no preceding space printed by this word. As with s,
the VARIABLE DPL specifies the number of digits to be printed to the right

of the decimal point (a value of -1 specifies no decimal point). The sequence

7 FLD (SET FIELD WIDTH TO 7) 0 DPL !
CR 32768, D. CR -65000, D. CR 1234567, D. CR

will output 32768.

-65000.
1234567.

column 1 of terminal

The decimal point that may be printed must be included in the specified field

width (i.e. - the double~word integer -1, requires a minimum field width of 3).

25, DDOUBLE X
4 FLD ! o0 DPL !
CR X Da bD. 1 pPL ! CR X Da D.

will output 25.

N
(8]

t__co]umn 1 of terminal

146 Oct. 1979

Floating-point numbers may be printed in one of two ways: with or without
an exponent. The word F. prints a floating-point number without an exponent
and the sequence

<field-width> <#digits-to-right-of-decimal-point> Ww.D

must be executed to set both the total field width (including decimal point)
and the number of digits to be printed to the right of the decimal point.

For example, the sequence

8 3 w.D
specifies a field width of 8 with three digits to the right of the decimal point

(similar to the Fortran F8.3 format). The sequence

8 3 WwW.D
CR 25.1 F. CR 3.14159 F,

will output 25,100
3.142

column 1 of terminal

(Note the rounding that is automatically performed.) As with the words F. and
D. the format control (by executing W.D) need only be specified once for a

sequence of numbers.

The word E. is used to print floating-point numbers with an explicit exponent.
The word w.D is used as above to control the printing of the fraction which is

then followed by 'E', followed by a 3-digit exponent. For example,

8 3 w.D
3.14159 E. will output 3.142E0
.314159 E. will output 3.142E-1
314L.5.9 E. will output 3.142E4

In floating-point output using either E. or F, the user must be careful
not to print more than 9 significant digits -- doing so will cause an asterisk
to be printed preceding the number, indicating overflow on conversion. This
means that very small numbers and very large numbers must be output with E.

and not with F..

Oct. 1979 14-7

The word G. will print a floating-point number using either E, or
F., depending on the size of the number. If the number is either too large

or too small for F. then E. will be used.

Note that the words ? E? F? and G? do not print the top number on
the stock, rather they require the address of the number to be printed to
be on top of the stack. For example, given the definition

0 VARIABLE

0. REAL
then

A3 .

B Fa F.

are equivalent to
A 7
B F?
One:is simply combining the two words @ and . into the word 2. This

combining of two or more words into a single word is discussed more thoroughly
in Section 15.4.

14-8 Oct. 1979

EXERCISES - CHAPTER 14

1)

2)

Oct.

Define a word named IMIN that reads a sequence of non-negative
integers from the operator and prints the minimum value. The end
of the input is signalled by a negative number being entered, at

which point the minimum should be printed.

A Fibonacci number is a number in the infinite sequence
o, 1, 1, 2, 3, 5, 8, 13, 21, 34

where the first two terms are 0 and 1 and each successive term is
the sum of the two preceding terms. Define a word named FIB

that calculates and prints all Fibonacci numbers < N where N is the
integer on top of the stack. For example

20 FIB should print 0 1 1 2 3 5 8 13

1979

14-9

15.

15.1

Feb.

ADVANCED ARITHMETIC

This chapter complements Chapters 5 and 7 by completing the description

of the arithmetic words available in FORTH.

NUMER ICAL FUNCTIONS

A table of the standard numerical functions provided by FORTH is given
in Table 15.1. The operation of all these words is similar in that they
all expect one or more parameters on the stack and then after popping

the parameter(s) from the stack the result(s) are pushed onto the stack.

The naming convention of these arithmetic words is to prefix the name
with a "p'" or an '"fF" if the word operates on a double-word integer
or a floating point number, respectively. The second character of a
trigonometric word will be 'D'" if the mode is degrees or 'R' if

the mode is radians.

1977 , 15

i

1

+jusbue] 10 UISOD ‘BUlS S| J9Ylld yiim (sda4bap
ui o(bue ue) >oeis 2yl uo Jaqunu doi 3yl sooe|day

NV iQd
s0oad
NIsQad

*(49693u} paom-3{qnop e jJO 3004 aJdenbs pajeosunal
Jaboju) pJom-ajbuls 8yl se3e|nd|ed 1¥0s) 3jo00d
aaenbs S3i ylIm 3de3s ayl uo Jaqunu dol ay3 sadse|dey

1yd0s4

1¥0S

*sJaqunu oM} 2yl JO 49| |euws
oyl Y1iM >oels ayl uo siaqunu oml dol Byl sooejday

NIWd

NIWG

NIW

*sioqunu oml oyl jo Jsbde|
2yl Y3 im >oels 3yl U0 SJ3qunu OM3 do3 ay3 seooe|day

XYW

XVRWQ

XV

*an|eA
2In|0sqe s3] YillMm >oels ayj uo Jaqunu doyl ay3 seooejday

sgvd

sava

sav

*soe1s ay3 uo taqunu dol 8yl 4o ubis ayl sabuey)

SANIRWA

SNNINWG

SNANIW

(1 ®3ou @95) °MO|3q Jepujews.d 3y pue >2e1s ay3
4o doy uo 3juaiionb syl Buiaea| “>oelS 2yl uO J3qunu
dol 9yl Aq »oelS 9yi uo Jaqunu puod3ds 343 sopliAl(

AQOW/

(1L @30u 935) >doels |yl jJo
do1 uo Japujewsu 2yl Bujaes| >oeis Syl uo Jtsqunu
dol 2yl Aq oIS Byl UO JIquNUu puod3s Y} SSPIAL(

AaowW

*3oe3s syl 4o doil uo j|nsad 49b623uy paom-2|buis

e BulAea| oe3S a8yl uo Joqunu doi 9yl Aq popiAlp

usyl s| 3[nsad Aseaodwal syl *3I|nsad Adeaodwol
19631u} plom-a|qnop e Bujwioy “3}de3S Byl uo Jaqunu
P41yl 9yl Aq >oel1S 8yl U0 J3qunu puod3s 3y3 sa1|di13|ni

7/ %xQ

/%

NO11d14JS3d

IN10d
INILVOTd

ERERN Y
qyoM-314N004d

ERERR
Q4OM-3TON IS

1979

Oct.

15-2

SNOILINN JI1LIWHLIYY

*(09€ ‘0] °bues 2yl ul 2q [[ImM J|NSad 3Yy)

‘puspiAlp 2y3 jo ubis @yl oq [[im Jopulewds dy3l jo ubls By} | :s93ION

- 1°5 ®|9eL

°C

*(x)016o|] Aq x sode|day 50714

*(x)¢6o| Aq x sade|day 907124

*(X)uy Aq X sooe|doy N4

‘%01 Ag x sooejdoy 01dX3d

‘«® Aq x sode|day dX34
*(32e1s ay3

uo Joqunu dol 3yl siI X [4dYm) 7z Aq X sooe|doy dX 2
(¢ @30u 935) °IE1IS 3Y] JO dol uo
juobuelode s3| soAes| pue (soo46ep ul) 9|bue ue se
1|nsed 2y3 s3aadaaiu) uayj pue oIS Syl U0 JI3qunu

dol syl AqQ oelS 9yl UO JdquNU puOdAsS Byl SIPLAIQ NlvQd

INIOd Y3931N| LERERN
NOI1d1¥353d ONILY0Td | QYOM-318n0d | Q¥OM-3T9NIS

15-3

May 1978

The following examples should elucidate some of the descriptions given

in Table 5.1.
80 (note that the intermediate product
= 40,000 which requires the
20000 . .
double-word intermediate result)
2 500
20000 80 *y
3 3
7 1 5 2
7 3 MQD S 3 MOD
3 5 5 9
16 1 Lg 0
16 3 /MOD 45 5 /M0OD
— -28 ~ = 28 o
5 -5
5 MINUS -28, DMINUS

15-4 Oct. 1979

-90.5 90.5

-100 100
-90.5 FMINUS -100 ABS
-1.5 1.5
124 — |~ 124 — -1 -
124, DABS -1.5 FABS
- '
-8.9
4 L -
=
-4 10.5 10.5
-5 -4
-5 -4 MAX 10.5 -8.9 FMAX

Oct. 1979 15-5

15

6

-
-5 -5
MIN
g -
2
SQRT

20000,

—~ 20000 -1 [~ 40000 -

6 3 D*/
1.4
- —— S -
1.5 1.4
1.4 FMIN
2.0 1.41421
FSQRT

Oct. 1979

15.2

Dct.

MIXED PRECISION OPERATORS

Mixed precision arithmetic operators perform arithmetic on numbers of
different modes. In FORTH the mixed precision words usually operate on

a single-word integer and a double-word integer. For example, the word

+ adds together two single-word integers, the word D+ adds together
two double-word integers and finally the mixed precision word M+ adds
a single-word integer to a double-word integer, leaving of course, a
double-word result. Similar to the prefixing of double-word operators
and floating point operators with "p" and 'F'', the mixed precision

operators are prefixed with an '"'‘M'.

M+ Adds a single-word integer on top of the stack to the double-word

integer below, leaving the double-word integer sum on top of the

stack.
2
— 59 1 T 61 ~
59, 2 M+
M* Multiplies the single-word integer on top of the stack by the

single-word integer below, leaving the double-word integer product
on top of the stack. (This word differs from the word * in that
* calculates only a single-word integer product while M*

calculates the full double-word integer product.)

—~ 80000 —

10000

10000 8 M*

1979 15-7

2M*

M/

M/MOD

15-8

Multiplies the single-word integer on top of the stack by the

double-word integer below, giving a double-word integer result.

~ 10000 ={ |~ 80000 -

10000, 8 2M*

Divides the double-word integer in the second position on the
stack by the single-word integer on top of the stack, leaving

the single-word integer‘quotfent on top of the stack.

10

— 60002
6000

60002 , 10 M/

Divides the double-word integer in the second position of the
stack by the single-word integer on top of the stack, leaving
the single-word integer quotient on top of the stack and the

single-word integer remainder below.

10

6000

— 60002 —

60002 , 10 - M/MOD

Oct. 1979

15.3

Oct.

ARITHMETIC RANGE ERRORS

In the implementation of KPNO Varian FORTH it was decided to ignore all
arithmetic range errors, that is overflow and underflow. Overflow
occurs when the result of an operation requires more precision than is
provided. For example, the largest positive single-word integer that

may be represented is 32,767 (Section 7.1) hence the sequence
20000 20000 +

will generate an erroneous result since the result (40,000) is larger

than 32,767. Similarly, the sequence
40000, SFIX

will also produce an erroneous result. Overflow can also occur in
floating-point operations if the range of the exponent exceeds the
largest possible exponent. Underflow can also occur in floating point
operations if the exponent is smaller than the smallest possible
exponent. Fortunately in Varian FORTH the range of the exponent in a
floating-point number is large enough so that exponent overflow and
exponent underflow are extremely unlikely. However, standard arithmetic
overflow is a likely possibility and it is up to the user to determine
the probable range of his variables when writing a program and use the

appropriate data structures so as to avoid overflow.

1979 15-9

15.4

COMBINED WORDS

In the interest of core efficiency and execution speed, there exist
many ''‘combined'' words which take twb or more commonly used words (which
are executed in sequence) and combine them into a single FORTH word.
For example, in Chapter 14 we saw where the sequence

a .
was combined into the word 7. |If the original sequence (& . in
this example) appears more than 5 times in one's program then the defini-
tion of the word ? and its use will reduce the amount of memory used by
the program. This technique is the essence of FORTH - combining primitive

operators into more general and useful words.

Some additional words which one is bound to encounter are:

1+ equivalent to 1+
1- 1 -
2+ 2+
2% 2 %
2/ 2 7/
D2* 2 1 D¥
D2/ 1 2 D*/
F2* 2.0 F*
Fa/ 2.0 F/
+! +
F+! F+ Fl!
FsQ 3DUP F*
1+! 1+ !
1-! 1-

One could define these words as one would expect, for example

s 1+ 1 o+
and this will work fine, however, many of the commonly used words listed
above are coded directly in machine language thereby providing a decrease
in execution time in addition to a decrease in memory requirements.
One should always use these combined words, rather than the original
sequence, as the implementation of a particular FORTH system may take
advantage of certain machine features in order to optimize the combined

word. For example, in KPNO Varian FORTH the words 2* 2/ p2* and D2/

15-10 Oct. 1979

are all implemented as arithmetic shifts. The words F2* and
F2, are implemented as an increment or decrement by one of the
floating-point number's exponent. The word 1+! is implemented

by a single machine instruction.

Oct. 1979 15-11

EXERCISES - CHAPTER 15

1)

2)

3)

15-12

Define a word named ?0DD/EVEN that will test the integer on top
of the stack and then print either '"oODD'" or ‘'YEVEN'.

if the top'word on the stack is a double-word integer representing
the number of seconds past midnight, define a word named ?TIME
that takes this value and prints the hour, minute and second.

Sample values are:

1, -—-> 0 (hours) 0 (minutes) 1 (seconds)
60, ~---> 0 1 0
3600, ---> 1 0 0
14399, -2 3 59 59
30332, ===> 8 . 25 32

Define a word named QUAD that solves the quadratic equation

ax2 + bx +c = 0
using the formula
-b + /b2 - Bac
2a

The parameters a, b &§ c will be the top three floating-point numbers
on the stack (c on top, b below ¢ and a below b). The output should
indicate the type of solution (one real root, two real roots or two

complex conjugate roots). For example

1.0 5.5 -10.5 QUAD should print
TwWO REAL ROOTS: 1.5 -7.0

4,0 -292.0 5329.0 QUAD should print
ONE REAL ROOT: 36.5

Oct. 1979

3.0 1.0 5.0 QUAD should print
TWO COMPLEX ROOTS (REAL ¢
COMPLEX PARTS):
-.16667 1.28019

L) Define a word named FDASINE that calculates the angle (in
degrees) whose sine is the floating-point number on top of the

stack. Use the equation

arcsin(x) = arctan Xt x| < 1

/T-x2
= 90° x = 1
= -90° X = =1

For example

0.0 FDASINE F. should print 0.0
1.0 FDASINE F, should print 90.0
-0.5 FDASINE F. should print . -30.0

Be sure to handle the case of x = %1,

5) Define a word named FDACOS that calculates the angle (in degrees)
whose cosine is the floating-point number on top of the stack.

Use the equation

arccos(x) = 180 - arcsin (Y1 - x?) -1< x < 0
= arcsin (V1 - x2) 0< x < 1

For example

0.0 FDACOS F. should print 90.0
1.0 FDACOS F. should print 0.0
~0.,5 FDACDS F. should print 120.0

Oct. 1979 15-13

6) Define a word named X**y that raises a floating-point number
x (second number on the stack) to the floating-point power vy

(top number on the stack). Use the formula

& o oy (an x)

(where e = 2,71828182). Print an error message if x <0

(since ¢n x is undefined for negative arguments). For example

5.0 2.0 X*¥*y F, should print 25.0
2.0 12,0 X**Y F, should print 4095.,99922

7) Using the word X**Y from the previous exercise, define a word
named FCUBERT that calculates the cube root of the floating-
point number on top of the stack. The argument may be negative in
which case the final answer must then be negated (to avoid the error

message from X**vy). For example

64,0 FCUBERT F, should print 4.0
-8.0 FCUBERT F. should print -2.0

8) Define a word named FROUND that will round a floating-point

number prior to the floating-point number being truncated by

either SFIX or DFIX. For example

4.4 FROUND SFIX . should print 4
4,5 FROUND SFIX . should print)

15-14 Oct. 1979

Define a word named I**J that raises a single-word integer,
i (second number on the stack) to a single-word integer power,
j (top number on the stack). Use the formula given in exercise 6

above. For example

10 3 I**y should print 1000
7 5 I**y should print 16807

Define a word named CUBE that cubes the single-word integer on

top of the stack.. For example
1 CUBE . should print 1
-5 CUBE . should print -125

Use the word T¥*y from the previous exercise.

Instead of using the word I**J in forming the cube of a single-

word integer (previous exercise) one could define CUBE as
: CUBE DUP DUP * *

Which definition do you think is preferable and why?

An iterative algorithm is one that repeats itself (iterates) until
a certain value is within a specified range. For example, an

iterative algorithm to determine the square root (y) of a number (x)

Yo = .5903x + .4173

= 1 X .
Yisr T 'z"(Yi +Yi) i = 0,1,2,...

In this example the initial approximation (yo) is calculated and
then used to calculate Yy Y1 is then used to calculate Yor Yy is
then used to calculate y3, etc. The algorithm terminates when the

value y converges to its limiting value. This is determined by

15-15

15-16

13)

14)

lyi+1 - yi I
| vi]
where ¢ is some predefined constant. If you want the square root

< €

to be accurate to five decimal places then e = 0.00001. Define a
word named SQROOT that calculates the floating-point square
root of the floating-point number on top of the stack, using the
iterative technique described above. Be sure to handle negative

arguments! For example

81.0 SQROOT F. should print 9.0
2.0 SQROOT F. should print 1.41421

Define a word named ECALC that calculates e (the base of the
natural logarithms, 2.718281828459045) using the infinite series
1 1 1

_ 1
e = 1 +7+77*Y T3 TRt

There should be no storing of intermediate results in memory
locations (use the stack!). This is another example of an

iterative algorithm.

Using the formula
n! = factorial(n) = 1%2%3% [, . *n

define a word named FACT that calculates and prints the single-
word integer factorial of the single-word integer value(n) on top

of the stack. If n 1is not in the range
0 < n < 7

output an error message instead of calculating the factorial.

(Note: factorial(0) = 1 by definition).

Oct. 1979

15) Why is 7 used as the upper limit of n in the previous example?

16) As you can see from the previous examples the value of factorial (n)
grows very rapidly as n increases. If we are interested only in an
approximation to factorial(n) , instead of its exact integer value,

we can use Stirling's approximation to n!

G @ <o« Am @ (=)
e € 12n-1
(where e = 2.71828182 and m = 3.14159265). Define a word named
N! which calculates the upper and lower bounds of ni where nis
the single-word integer on top of the stack. Use the E format for
printing the values. Note that the word X**Y from exercise 6

above must also be used here. For example

3 N! should print 5.8362 E 0 < 3! < 6.0030 E O
4 N! should print 2.3506 E 1 < 4. < 2.4006 E 1
5 NI should print 1.1802 E 2 < 5! < 1.2002 E 2
100 N2 should print 9.3248 E 157 < 100!

< 9.3326 E 157

17) Define a word named STAT which inputs a series of numbers and
calculates their mean and standard deviation. When the word is
executed it should first ask the operator how many numbers are to
be input {a single-word integer) and then input each (floating-
point) number. After the last number has been entered the mean and
standard deviation should be calculated using the formulas below,
and then output.

B X

n

mean =

nL(X;)2 - (zX;)?
std. dev, =

n(n-1)

Oct. 1979 15-17

where n- is the number of items input and Xi is each separate

number that is input. For example

STAT HOW MANY NUMBERS? &
?4.0

76.0

74,0

?6.0

MEAN = 5,0

STD DEV = 1.1547

18) The greatest common division (GCD) of two integers a & b is the
largest integer that evenly divides both a and b. For example,
GCD(20,25) = 5; GCD(20,40) = 20. A classical algorithm found in
computer science texts is Euclid's algorithm for finding the GCD.

This algorithm may be stated as:

—r = (a mod b) (i.e. = r equals the remainder
of a divided by b)

If (r=0) then the answer is b, stop.

a = b

b = r

-] 0op around

For example, we find that GCD(27,21) = 3 as follows

a = 27 21 6
b = 21 6 @ <@ answer
r = 6 3 0

(Note that this algorithm works regardless whether a>b or b>a

initially.)

15=18 Oct. 1979

Write a word in FORTH named GCD that expects two single-word
integers on the stack and then calculates and prints their
greatest common divisor. For example, entering 27 21 GCD
should print 3. Calculate GCD(2166, 6099).

19) Frequently one encounters the problem of calculating the mean of
a large group of single-word integers. These values could, for
example, be a sequence of integer data points read in by the
program from some data collection instrument. Assume that we

have a vector defined as
2047 ()DIM DATA

containing 2048 points. Define a word named M+RMS that
calculates and prints both the mean and the rms (root mean
squared) of the data vector. The rms is defined as the square
root of the average of the squares of each point. One would
like to avoid the use of floating-point arithmetic as on a
mini-computer without floating-point hardware these operations
take considerable time to execute. This additional time is
even more noticeable when a large vector of numbers is being
operated on. However, single-word integer arithmetic is
definitely unacceptable for both the mean and the rms as there
is an almost definite probability that the sum of a couple of
numbers will overflow a single-word value. |If we think of usina
double-word integer arithmetic then consider the square of the
largest data point (32,767)--its value is 1,073,676,289 which
is almost the largest value that may be stored in a double-word
integer (Section 7.2). We then see that forming the sum of

the squares of a vector of integers could possibly overflow a
double-word sum. We could probably form the sum of all the
numbers (for the average) as a double-word sum as it would

take 32,768 numbers, each having the largest possible value

(32,767) to overfiow a double-word sum. To do this and perform

Oct. 1979 15-19

only one pass over the data would require that we keep both a
floating-point sum and a double-word integer sum on the stack
together. Manipulating these two sums in an alternate manner
is very clumsy in FORTH so we resign ourselves to using only

floating-point arithmetic.

In order to make this word as general as possible define the word
0 CONSTANT NOP

to contain the number of points (1-2048) in the vector DATA.
Set NOP to 5 and calculate both the mean and rms of the data
points

16,105
18,291
14,333
17,015
15,280

20) The algorithm used in the previous problem to calculate the
mean of a group of integers (forming the sum of all the
numbers and then dividing by the number of points) is not
always satisfactory. One can conceivably imagine a very large
set of data points (say on the order of one million points) in
which case neither a double-word sum nor a floating-point sum
would suffice. The double-word sum would overflow and the
floating-point sum would get so large that the data points
being added to it would be equivalent to zero (a floating-point
number has only a finite precision). One solution to this
problem is the stable running mean algorithm. |If we have a
sequence of data points Xi we calculate the new mean of
the sequence X], X2, «.. as

X, - oldmean
newmean = oldmean + i

¥5-20 Oct. 1979

21)

Oct.

Initially we must set oldmean = 0. For example if we use the

data points given in the previous problem we obtain

newmean = O + 16105 - 0} = 16105
i
newmean = 16105 + [18291 - 16105 = 17198
2
newmean = 17198 + [14333 - 17198 = 16243
3
and so on. If we calculate the average of these three data

points it also equals 16243, as we would expect. This
algorithm is termed a '‘running mean'' since we maintain the
current mean at each interation. Here we do not have to worry
about overflow as long as our data points are single-word
integers. (One problem that may be encountered here is a
sequential loss of precision in the integer divisions. This
effect may be lessened by use of floating-point arithmetic.)
Refine a word named RMEAN that calculates the mean of NOP
number of points in the vector named DATA (see previous
problem). Test this word using the five data points from the
previous problem. Keep the values of newmean and oldmean

on the stack!

The following algorithm calculates the date of Easter for any

year after 1582 [Knuth, Donald E., The Art of Computer

Programming, Vol. 1, Addison-Wesley, 1973]1. Define a word
nhamed EASTER which prints the date of Easter, given the

integer year on top of the stack. For example

1977 EASTER should print APRIL 10, 1977
1978 EASTER should print MARCH 26, 1978

(A11 division in the algorithm is integer division).

1979 15-21

G = (YEAR mod 19) + 1 (G is the golden number of the year

in the 19- year Metonic cycle)
= (YEAR / 100) + 1 (C is the century)

X= ((3%C) /7 &) - 12 (correction for number of years in
which leap year was dropped)

Z = (((8%C) + 5) / 25) - 5 (correction to synchronize Easter
with the moon's orbit)

D = ((5*%YEAR) / 4) - X = 10 (find Sunday)

E= ((11%G6) + 20 + Z - X) mod 30

IF (E<0) E=E+ 30
IF (((E = 25) AND (G>11)) OR (E=24)) E=E + 1
(E is the epact which specifies
when a full moon occurs)
N=~544 - E
IF (N <21) N=N+ 30 (The NP of March is a full moon)
N=N+7=-((D+ N) mod 7) (Advance to Sunday)

If (N> 31) then the date is April (N-31)

else the date is March N

Define the necessary variables to be used as intermediate results

and also try to use the stack as efficiently as possible.

15-22 Oct. 1979

16.

16.1

Feb.

REAL-TIME 1/0

This chapter is the essence of what FORTH was originally designed

for - the control of real-time data acquisition devices. The definition
of the word "real-time' is itself quite obscure in the development of
computing technology and is a frequently misused adjective. In this
author's opinion a real-time device is one which, when it presents data
to the computer, must be acknowledged by the computer within a certain
limited time frame or else the original data is lost. This loss of

data generally occurs because the device has already accumulated new
data for the program. The speeds of real-time devices vary considerably
and it is the speed of the computer along with the speed of the real
time device(s) that determines the maximum data acquisition rate of a

particular system.

INTERRUPTS

An interrupt is the facility whereby a device notifies the computer that
the device requires service of some sort. Typical reasons for a device

generating an interrupt are:

- the device has some data for the computer to input,
-~ the device has completed the output of the previous

data and is ready to accept some additional data to output,
- the device has detected an error of some sort during

an 1/0 operation.

Once the computer is notified that a device requires service, the

computer can start a program to handle the device.

From a programming standpoint it is one's job to write a program that
will service a specific device's interrupt. In reality the program
that services a device's interrupt is generally only a small portion

of a larger program and is therefore called an interrupt routine.

1977 16-1

16.2

16-2

The nitty gritty details of exactly how a device generates an interrupt
followed by how the computer determines exactly which device is
requesting the service are vastly different for each computer and
beyond the scope of this primer. Suffice it to say that with KPNO
Varian FORTH one writes a word to process a specific device's interrupt
and FORTH will then perform the required linkage to insure that this
word will get control every time the specified device generates an
interrupt. The actual definition of this word will be discussed in

greater detail in the next section.

A CAMAC interrupt (CAMAC is described in the next section) is referred
to as a LAM which means that the device is telling the computer
'"Look At Me''.

CAMAC 1/0

One problem that has plagued the users of mini-computers ever since
their introduction has been the interfacing (i.e. - the electronic
connection) of devices to a specific computer. Typical problems in
this area are

(a) a particular type of device requires a different interface
for every different computer,

(b) when you switch computers you must buy:all new interfaces for
your devices (a favorite technique of mini-computer manufacturers
to '"lock'' a customer into their series of computers).

As a way around these problems the CAMAC standards were developed by

the European Standards on Nuclear Electronics Committee (ESONE) in 1969.

These standards have since been updated and recently adopted by the I|EEE.
CAMAC is a hardware system designed to provide simple, computer-

independent input and output. Standardized electronic components

(modules) are joined together in one or more machine-independent

Feb. 1977

housings (crates) which are then connected to a specific computer via

a single machine-dependent interface (the Branch Driver). The advantage
in using CAMAC is that over 100 different devices may be connected to
the computer through a single interface, thus simplifying the possible
transition to a new computer. Additionally, there are over 70 companies
worldwide producing CAMAC hardware thereby relieving the user from

having to design and build his own specialized devices.

Unfortunately in discussing any type of input/output, one must become
more familiar with the specifics of the computer being utilized. In
the case of this primer it requires that one understand that the
computers in use at KPNO are Varian 620's with a word size of 16-bi ts.
Thus the previous references to a single-word integer are references
to a 16-bit integer and the double-word integer is really a 32-bit
integer. All data transfers between the Varian and CAMAC involve 24-bits.

The CAMAC Module is the device that the program wishes to control - it

is the module that we must initialize when an 1/0 operation is to
commence and it will be the module that will generate the interrupt

when the 1/0 operation is finished. At a lower level, each module may

be sub-addressed, to facilitate the control of multi-channel modules.

As an example, the KPNO Timer Il is a dual channel, high resolution

timer and both channels are completely independent of each other (but
both channels are packaged in a single module). To specify which

channel you wish to control you must specify both the module and the
sub-address; likewise when processing an interrupt from the timer you
must determine which channel (i.e., sub-address) generated the interrupt.
When addressing a CAMAC module a sub-address value between 0-15 (decimal)
will be specified. In the programming of modules which do not require

a sub-address, zero is commonly used. It should be noted that the

sub-address does not always address separate channels in a multi-channel

Feb. 1977 16-3

16

L

module, instead in some modules the sub-address specifies additional
functions for the module to perform (the KPNO Input/Output Register

is a good example).

Modules are housed together in CAMAC Crates with up to 23 modules per
crate. Each module in a specific crate is addressed by specifying the
slot number in the crate of the module. These slot numbers are also
referred to as station numbers and have a value between 1-23 (decimal).
Some modules physically require more than one slot in a crate (due to
the width of the module) and the KPNO Display Panel Controller Module

is an example of a module requiring two slots. These multi-slot modules
are addressed by specifying only the lowest slot number of the module
(for example the Display Panel usually occupies slots 20 and 21 and is

addressed through slot 20).

There may be up to seven crates in a CAMAC system and these crates are

addressed as 1-7.

The addressing required to select a specific module is therefore:

C = Crate (1 -7)
N = Station Number (1 - 23)
A = Sub-Address (0 - 15)
F = Function Code (0 - 31)

This sequence is generally referred to as CNAF.

The Function Code is the method whereby you tell the selected module
exactly what function it is to perform. There may be up to 32 (decimal)
different Function Codes for a module (specified as 0-31) and although
the codes will differ from one module to another, the general convention

that is followed is:

Feb. 1977

16.3

Oct. 1979

Function 0 - 7 > read

8 - 15 -+ control
16 - 23 > write
24 - 31 + control

FORTH CAMAC WORDS

The programming of CAMAC input and output is actually much simpler than
would appear from the previous section since FORTH handles most of the
complicated details. The programming of a module from a colon

definition is the subject of this section.

Each specific CAMAC module is identified in FORTH as a word which
identifies that specific module. In order to define a <module-ID>

one writes
<slot-number> $CN; <module- D>

where <slot-number> is a single-word integer value between 1 and 23
specifying the slot number in the crate. <module-iD> is the name
assigned by the programmer to the module. For example, the following

are from block 54:

13 $CN; $110 (I/0 REGISTER 1)
14 $CN; $210 (I/0 REGISTER 2)
18 S$CN; $TM (TIMER MARK II)
(

19 $CN; $DO DIGITAL OSCILLATOR)

One should note that the convention used at KPNO is to prefix all CAMAC
words with a dollar sign. Before executing the above definition one
must store in the integer CRATE the crate number of the <module-1D>

being defined. The definition of CRATE is
1 VARIABLE CRATE

and this word is defined in block 50 (and will therefore be entered into
the dictionary when the CAMAC blocks, 50 thru 53, are loaded when the
word USER is executed).

16-5

Consider the example definition

5 CRATE !
19 S$CN; $5D0

which defines the word $5D0 as the device in slot 19 of crate 5.

Now that we know how to identify each module we need a way to have a
specific module execute a specific function. As would be expected, one
defines a word in FORTH which when executed will perform the specified

CAMAC 1/0 function. The general format of the definition is
<F-code> <sub-address> <module-ID> <operation-type> <name>

<F-code> Is a single-word integer value (between 0 and 31)

that specifies the function code.

<sub-address> Is a single-word integer value (between 0 and 15)

that specifies the sub-address.

<module- {D> Is a previously defined word which specifies both
the crate and the station number of the module

(described above).

<operation-type> Is a system defined word (refer to the list below)
which specifies what parameters are expected to be
on the stack (prior to an output operation) or what
parameters will be left on the stack (following an
input operation). This word processes all the
previous parameters (<F-code>, etc.) and creates

the appropriate dictionary entry for <name>.

<name> Is the user specified identifier which will identify
this specific 1/0 operation. When the word <name>

is executed the |/0 operation will be performed.

Feb. 1977

Feb.

The following words are defined as <operation-types>:

$COMMAND ; Transmits a command to the module - no stack

operations performed.

$ACOMMAND ; Expects a single-word integer sub-address on top of

the stack, then transmits a command to the module.

$READ Reads the low-order 16-bits of CAMAC data onto the
top word of the stack.

$AREAD Expects a single-word integer sub-address on top of
the stack, then reads the low-order 16-bits of CAMAC
data onto the top word of the stack.

$2READ Reads the full 24-bits of CAMAC data onto the top two

words of the stack (see below for format).

$2AREAD; Expects a single-word integer sub-address on top of
the stack, then reads the full 24-bits of CAMAC data
onto the top two words of the stack (see below for

format).

SWRITE; Writes the word on top of the stack as the low-order
16-bits of CAMAC data.

$AWRITE ; Expects a single-word integer sub-address on top of
the stack, then writes the next word on the stack as

the low-order 16-bits of CAMAC data.

$2WRITE; Write the two words on top of the stack as the full
24-bits of CAMAC data (see below for format).

$2AWRITE ; Expects a single-word integer sub-address on top of
the stack, then writes the next two words on the stack
as the full 24-bits of CAMAC data (see below for

format).

1977 16

7

16-8

Note that the A-command format for each <operation-type> allows the
specification of the sub-address when the word is executed, whereas the
other format requires the sub-address to be specified when the word is
defined. When defining a word with the A-command format the <sub-

address> in the definition must be specified as zero.

Unfortunately, due to a peculiarity of the Varian hardware in processing
double-word integers, the format of the 24-bit CAMAC data does not
correspond to the format of FORTH's double-word integers. In order to

convert between the two formats, the words PACK and UNPK are

provided:
PACK
—_—
FORTH double-word integer 24-bit CAMAC data
UNPK

Whenever 16-bits of CAMAC data are transferred a single-word integer

is used.

The following examples of some CAMAC definitions assume that the reader
has available the write-ups on the specific module (which describes the
interpretation of the <F-code> and <sub-address> for the specific

module in question).

8 0 $TM $ACOMMAND ; +MOVE
Defines the word +MoOVE for the timer module as
F(8) (i.e. - the <F-code> 8). This F-code will set
the sfgn line to plus. Note that this word, when
executed, expects the top of the stack to specify
the sub-address, hence this word may be used for

either channel of the timer.

Feb. 1977

1 +MOVE Sets the sign of the timer Channel 1 to plus.
2 +MOVE Sets the sign of the timer Channel 2 to plus.

3 +MOVE Sets the sign of both Channel 1 and Channel 2 of

the timer to plus.

16 15 $UD $2WRITE; UDCWRITE
Defines the word UDCWRITE for the up/down counter
as F(16). This F-code writes 24-bits of data to the
up/down counter. Note that the sub-address is
specified as 15 (which equals 8 + 4 + 2 + 1) therefore

this command will write to channels 1, 2, 3 and L.

50000, PACK UDCWRITE
Writes 50,000 to channels 1, 2, 3 and 4 of the
up/down counter., Note that the double-word integer
must be PACKed prior to the 1/0 operation in
order to convert it to the 24-bit CAMAC data format.

2 (0] $UD $2AREAD; UDCREAD
Defines the word UDCREAD for the up/down counter
as F(2). This F-code reads 24-bits of data from the
specified channel(s) of the up/down counter onto the

stack.

8 UDCREAD UNPK D.
Reads the contents of the up/down counter's channel 4
counter onto the stack, converts the 24-bit CAMAC
word into a double-word integer and then prints

the result.

16 2 $DO $SWRITE; DDOK2
Defines the word DDOK2 for the DDO module as F (16).
This F-code writes 16-bits of data to channel 2 of
the DDO as the K-factor.

Oct. 1979 16-9

16.4

16-10

256 DDOK2

FORTH

2 of the DDO.

Note that no conversion is required when reading or

Writes 256 as the K-factor for channel

writing a single-word integer as 16-bits of CAMAC data.

INTERRUPT WORDS

The method of writing a sequence of FORTH words to process interrupts

from a specific device is to use the words !: and ;!C to begin and

terminate the definition, as follows:

<module-1D>

<module-i{D> $!

<name>

<words>

$! '+ <name> <words>

Identifies the device whose interrupts are to be

processed. (<module-|D> was described in Section

16.2).

Starts the interrupt colon definition, similar to

the standard

Is the user specified identifier that identifies the

dictionary entry for this definition.

Are the names of previously defined FORTH words that
will be executed when an interrupt occurs from the

specified device.

Terminates the interrupt colon definition, similar

to the standard ;

Terminates the interrupt colon definition, identical

with ;! however, ;!C will cause a Branch Driver

stack ''pop'' to be executed before returning to the
interrupted routine. (This is the normal way to
terminate an interrupt routine as the Branch Driver
stack is automically ''pushed" when an interrupt is

acknowledged.)

May 1978

Once this definition is entered into the dictionary, all interrupts
from the specified device will cause the specified sequence of <words>

to be executed.

The following example should elucidate many of the techniques in this
chapter. We want to write a word that keeps the time-of-day and will
print out the current time-of-day on demand. In order to ''count' the
time we will use the KPNO timer module to generate an interrupt every
hundreth of a second (0.01 second). This interrupt routine will
increment a double-word integer once every 0.01 seconds and the word
WHATTIME will print the contents of this counter when executed.
Additionally we need a word SETTIME which initializes the counter

to a specified time.

First the CAMAC function words:

0 1 $TM $READ; TMRECLAM
11 1 $TM $COMMAND; TMGD
16 1 $TM $2WRITE; TMLOADPERIOD

17 1 $TM $2WRITE; TMLOADN
25 1 $TM $COMMAND; TMCLEAR
27 1 $TM $COMMAND ; TMENABLELAM

The double-word integer counter:

DPREC
0, 2VARIABLE COUNTER

The interrupt processing routine, named TODINT:

$TM $! !: TODINT TMRECLAM DROP COUNTER D@a
1 M+ COUNTER D! s iC

Oct. 1979 16-11

The word to output the current time-of-day:
i WHATTIME 2 F ! (field width of 2 for numeric output)
COUNTER D@ 1 100 D*/
(comvert 0.01 sec. to sec.)
60 M/MOD 60 sMOD (hours, min., sec.)

S. : S. H S.

The word to initialize the timer and input the current time-of-day

from the operator:

:+ SETTIME ." ENTER TIME (HH:MM:SS.) "
DASK 100 1 D*/ (convert sec. to 0.01 sec.)
COUNTER D! (initialize counter)

10000, PACK TMLOADPERIOD

(10,000 micro-sec. = 0.01 sec.)
999999 , PACK TMLOADN (run for a long time)

TMENABLELAM (one interrupt on every pulse)

TMGO (start the timer)
Before executing these words one must execute

$SETUP

which initializes the CAMAC system.

16-12 Oct. 1979

The following points should be noted in the example:

- Channel 1 of the timer is arbitrarily used (channel 2 could

just as easily have been used).

- The double-word integer COUNTER is effectively counting the

number of 0.01 seconds past midnight.

- The interrupt routine simply clears each LAM and increments

the double-word counter.

- Since there are no double-word integer multiply and divide words
(corresponding to * and F*, s and F/) the word D*/

is used to multiply and divide double-word integers.

- The word SETTIME initializes the timer rate to 0.01 seconds
(note the output to the timer must be specified in micro-seconds
= 10”6 seconds) and sets the number of interrupt§ to 999,999.
This latter number has no particular meaning in this example
except to insure a sufficient number of interrupts (999,999

interrupts divided by 100 interrupts per seconds = 9999 seconds

& 3 hours).

The reader should enter these words into a block and then execute them
to confirm that they perform as claimed. Furthermore you should

thoroughly understand the example since many various techniques are used.

Feb. 1977 16-13

"Would you tell me, please, which way | ought to go from here?"
'"That depends a good deal on where you want to get to,' said the Cat.
"I don't much care where--'"' said Alice.

""Then it doesn't matter which way you go,' said the Cat.

'"--so long as | get somewhere," Alice added as an explanation.

'"0h, you're sure to do that,'" said the Cat, "if you only walk long enough."

LEWIS CARROLL

Alice's Adventures in Wonderland

16-14 Feb. 1977

APPENDIX A - ASC1I CHARACTER SET

8-Bit Octal 8-Bit Octal
7-Bit M 7-Bit M
Octal Character Even 0dd Octal Character Even 0dd
000 NUL (null) Control/Shift-P 000 200 100 @ (at sign) 300 100
001 SOH (start of header) Control-A 201 001 101 A (upper case alphabetics) 101 301
002 STX (start of text) Control-B 202 002 102 B 102 302
003 ETX (end of text) Control-C 003 203 103 c 303 103
004 EOT (end of transmission) Control-D 204 004 104 D 104 304
005 ENQ (enquiry) Control-E 005 205 106 E 305 105
006 ACK (acknowledge) Control-F 006 206 106 F 306 106
007 BEL (ring bell) Control-G 207 007 107 G 107 30_7_
010 BS (backspace) Control-H 210 010 110 H 110 310
011 HT (horizontal tab) Control=i 011 211 11 | 311 111
012 LF (line feed) Control-J 012 212 112 J 312 112
013 VT (vertical tab) Control-K 213 013 113 K 113 313
014 FF (form feed, top of page) Control-L 01k 214 Ny L 314 114
015 CR (carriage return) Control-M 215 015 115 M 115 315
016 S0 (shift out) Control -N 216 016 e N 116 316
017 SI1 (shift in) Control-0 017 217 117 0 317 117
020 DLE (data link escape) Control-P 220 020 120 P 120 320
021 DC1 (device control 1) Control-Q 021 221 i21 Q 321 121
022 DC2 (device control 2) Control-R 022 222 122 R 322 122
023 DC3 (device control 3) Control-S 223 023 123 S 123 323
024 ochk (device control 4) Control-T 024 224 126 T 324 124
025 NAK (negative acknowledgment) Control-U 225 025 126 U 125 325
026 SYN (synchronize) Control-V 226 026 126 vV 126 326
027 ETB (end of transmission bik) Control-W 027 227 127 W 327 127
030 CAN (cancel) Control-X 030 230 130 X 330 130
031 EM (end of medium) Control-Y 231 031 131 Y 131 331
032 SUB (substitute) Control-Z 232 032 132 Z 132 332
033 ESC (escape) Control/Shift-K 033 233 133 [(left bracket) 333 133
034 FS (file separator) Control/Shift-L 234 034 134 \ (back slash) 134 334
035 GS (group separator) Control/Shift-M 035 235 135] (right bracket) 335 135
036 RS (record separator) Control/Shift-N 036 236 136+ (up arrow) 336 136
037 US (unit separator) Control/Shift-0 237 037 137 <« {back arrow) 137 337
040 (space) 240 oho 140 ~ (accent grave) 140 340
o4 ! (exclamation point) 041 241 141 a {(lower case alphabetics) 341 141
042 " (quote) oL2 242 142 b 342 142
043 # (pound sign) 243 043 143 ¢ 143 343
Okl $. (dollar sign) oLk 244 144 d 344 144
045 % (percent sign) 245 045 45 e 145 345
okt & (ampersand) 246 oké 146 f 146 346
o047 ' (prime) ok7 247 47 g 347 147
050 ((left paren) 050 250 150 h 350 150
051 } (right paren) 251 051 151 i 151 351
052 * (asterisk) 252 052 152 j 152 352
053 + (plus sign) 053 253 153k 353 153
054 , (comma) 254 054 154 1 154 354
056 - (minus sign, hyphen) 055 255 155 m 355 155
056 . (period) 056 256 156 n 356 156
057 / (slash) 257 057 157 o 157 357
060 0 (numerics) 060 260 160 p 360 160
061 1 261 061 161 q 161 361
062 2 262 062 162 r 162 362
063 3 063 263 163 s 363 163
064 4 264 064 164t 164 364
065 5 065 265 165 u 365 165
066 6 066 266 166 v 366 166
067 7 267 067 167 w 167 367
070 8 270 070 170 x 170 370
o7n 9 071 271 171y 371 171
072 : (colon) 072 272 172 2z 372 172
073 ; (semi-colon) 273 073 173 { (1eft brace) 173 373
074 < (less than) 074 274 174 | (vertical bar/logical OR) 374 174
075 = ({equals sign) 275 075 175 } (right brace) 175 375
076 > {greater than) 276 076 176 ~ (tilde) 176 376
077 7 (question mark) 077 277 177 DEL (delete, rub out) 377 177
Feb. 1977 A-1

APPENDIX B - FORTH ERROR CODES

Whenever FORTH detects an error, a message is output to the terminal consisting
of a question mark followed by a single character. This appendix describes the

error associated with each single character code.

2Q The word could not be found in the dictionary. Check for a possible
typing error or a spelling error.

2R Line printer off-line or disc error. In the case of a disc error, the
sequence N 6 + @ O will print the disc status word.

?S Program abort (the word ABORT was executed by someone to exit some

piece of code).

Al Magnetic tape error detected by the FORTH Block 1/0 drivers (probably
the tape drive is off-line or there is no write-ring on a write opera-
tion).

U Stack underflow. A word or words were expected on the stack but the

stack was empty.

2V Dictionary and stack overflow. The combined size of the dictionary and
the stack exceeds the total allocated core area. This error indicates
either too many words have been entered into the dictionary or else
someone is pushing too many words onto the stack.

W I1legal disc block access. The block number of the requested disc block
or tape block is illegal (i.e., - not in the range 0-4895).

X Input error following an asking-word request for a number or an unexpected
interrupt from some device.

Y A magnetic tape error of some sort (tape drive off line, parity error,
missing write ring on write, etc.) has been detected by the direct
magnetic tape drivers.

?Z Indicates a console interrupt (operator pressed Control-X key), a di splay
panel interrupt (operator pushed the rightmost bottom pushbottom) or power-

fail recovery.

Oct. 1979 B-~1

ANSWERS TO EXERCISES

APPENDIX ¢

CHAPTER 5
1) 6 7 * 5 * 2 + yields 383
7 5 4
empty 6 6 L2 42 L7 47
6
3 2 1
188 188 191 191 382 382 383
* 3
empty
2) 1 2 + 3 + / 8 yields

Feb. 1977

CHAPTER 5

2) Continued

2 12
empty 1 1 3 3
1
3 8
9 9 3 7
15 15 15 15 5
+ 9
56
5 -51 empty
* -
Feb.

-2

1977

CHAPTER 6

1)

Feb.

a)
b)
c)
d)
e)

f)

1977

SINY
X+Y

XANT
XANT
SINY

none, will generate

Y+XX

?Q

C-3

CHAPTER 7

1)

c-4

S VARIABLE

100

CONSTANT

I

J

L)

.-

will print

will print

will print

will print

30

890

31

Oct.

1979

C-5

12 enjeA oyl uldd ||Im * g
m + MHM + Vv
v g +
a
N
J
R e A
\ g
g
A
Y
g 1-v
—-_Ft —— + ¥
v a
N J
2 IV v
v 8
"\ A
N
1-v
g
I,
1-v
— A — m
- 1 ev 8@ ev g ey)

g8 1INVLISNOD 2¢
v 3I8GVIdVA 02 (¢

Oct..

L ¥3L1dVYH)

CHAPTER 7

3)

k)

c-6

10, 2VARIABLE
30, 2 CONSTANT
JJ 1, D+ 11
JJ 11 Da D-
II Da D.
JJ D.
I1I Da JJ D+
JJ 11 Dba D+
11 Da D.
JJ D.
1 CONSTANT A
5 VARIABLE B
8 CONSTANT C
25 VARIABLE D
B @ CDa +
A
Ba@ C * B 3
A

11
JJ
D!

]

101

JJ D!

’ D+

JJ D!

11 D!

will print

will print

will print

will print

will print

will print

1
1

31.
-1.

31,
30.

165

165

Oct.

1979

CHAPTER 7

5) 3, 2CONSTANT
5, 2VARIABLE
7 » 2CONSTANT
11 , 2VARIBBLE
17 , 2CONSTANT

m O o O >

B DbDa C D+ D D@ D+ E D+ ' A D!

A D. will print 40,
BDa C DDa E D+ D+ D+ ' A D!
A D. will print 40 .

6) (B2 - BAC) whose value will be 36.0. This value is left on the stack
(since it is not specifically stored in a variable).

7) For a single-word integer the largest value is 32,767 which corresponds

to 9:06:07. For a double-word integer the largest value is 1,073, 741,823

which corresponds to approximately 298,261 hours! Hence if you are

counting the number of seconds past midnight you must use a double-word

integer since a single-word integer does not provide sufficient precision.

Oct.. 1979

c-7

CHAPTER 7

8)

9)

10)

c-8

I

J

Y

a

SFLOAT X
SFLOAT Y

F. will

Fa F*
F/ F/
print

A Da B

'y F!

0.12002

D_.

DFLOAT

F7

Note how the maximum accuracy (floating-point) is maintained throughout

the calculation.

(when the new value of B

a)
b)
c)

d)

e)

f)

false, since
false, since
true, since
false, since
true, since

true, since

since 10 -

10

There is no truncation performed until

is stored).

its value is 0,

(true
(true
(false
(false

(true

false
true
false
true

true

AND)
AND)
OR)
XOR)

OR)

-——>

———

-———>

——

-——=>

false.
true.
false.
true.

true.

required

Feb.

1977

CHAPTER 8

1)

2)

3)

L)

Feb.

Use the formula

X D@
z D.
X Da
z D.
X Da
z D.
X Da
Z D.
a)

1977

Z = (X -Y) + (X - VY).
Y DO- X Dd Y D- D+ ' D!
will print -8.
Y D- 2DUP D+ 'z D!
will print -8.
2DUP Y D- 2SWAP Y D+ D+ ' z D!
will print 10,
Y 20VER 20VER D- D+ D+ Z D!
will print 10,
L
5 5 9
5 5 5 5 -4
5 DUP 4 -

c-9

CHAPTER 8

L) b)
12 3
3 3 12 12
12 12 12 12 12 24
12 3 OVER SWAP DROP +
L) c) 1
2 2 3 1
1 1 1 1 3
1 1 1 1 1 1
1 DUP 2 OVER + ROT
1
3
1 1
1 1 2
3 3 3 6
1 1 1 1 -5
3DUP 2DROP + * -
c-10 Feb.

1977

CHAPTER 8

5) Yes, they are identical, as shown below:
7
A i
7 7 7
7 4 OVER
7
4 7 7
7 7 4 k4
7 4 SWAP DUP ROT ROT

6) : 2PICK DUP 1 + PICK SWAP PICK ;
3PICK DUP DUP 2 + PICK SWAP

1 + PICK ROT PICK ;

Oet. 1979

i1

CHAPTER 9
1) : I**4 DUP DUP DUP * * *
¢ I**4 DUP * DUP *

The second method is preferable since it requires one less

multiplication than the first method.

Cc-12 Feb. 1977

CHAPTER 10

1) a) 2898, 2899
b) -4, =5
c) -2, -4, -6
d) -3
e) -3
f) 18, 12, 6
g) 6, 12
h) -1
2) : IPROD 1 11 2 DO I * 2 +LOOP .

3840 will be printed.
Also the following word will work (why?)

+ 2PROD 1 12 2 DO 1 * 2 +LOOP . 3

3) : 3PROD 1 2 10 DO I * -2 +LOOP .

3840 will be printed.

L) 0 VARIABLE INDEX

INCINDEX INDEX @ 1 + INDEX ! H

SUM3 50 INDEX ! 0 BEGIN INDEX a + INCINDEX INDEX
@ 100 > END . 3

5) : DO= OR 0= 3
D= D- DO=

DOo< SWAP DROP 0K< H

D> 2SWAP D- DOK< H
t D< D- DOK< 3
: DMAX 20VER 20VER D< IF 2SWAP THEN 2DROP H

: DMIN 20VER 20VER D> IF 2SWAP THEN 2DROP

e

Oct. 1979

CHAPTER 10

6)

7)

8)

9)

10)

Note the order in which these words are defined, so that each word may
use a previously defined word, The word DO= uses the fact that a
double-word integer is zero if and only {f both single-word halves of
the double-word are zero. Thus the OR of these two halves of the
double-word will be zero if and only if both halves are zero. The word
DO< uses the fact that the sign of a double-word integer is contained
in the top half of the double-word and therefore the bottom half may be

ignored for this comparison.

:+ SIGN DUP 0= IF S z" DRoP
ELSE 0 < 1IF SONY
ELSE .'' P"
THEN
THEN

3 EX 1 + 1 DO I PICK . LOOP 3

19 ()DIM VEC
: VINIT 26 0 DO I 1 VEC ' LuoP

(>« 0 D3 CR DUP e « 1 + LOUP DRuUP
2¢()s 0 DO CR DUP De De. 2 + LOOP DROP
3¢ 0 DO CR DUP F@& F. 3 + LOUP DRUP

e s¢ o8
we e ‘oo

5 3()DIM vC
0 CONSTANT N
297 0 VC F! -8e2 1 VC F! “1e9 2 vC F!
4.5 3 VC F! 0.52 4 VC F! -8¢3 5 vC F!
¢ 3VBUBSORT ' N ¢ N 1 C 15 25 ese » N~=1)
13]8] I1 N1 - (N=15 N=25 eee » 1)
DO 11 -VUC Fe I VC F@ 30VER 3UVER F>
IF 3s5WwaPp 1 VC F! 11 - VC F!
ELSE 3DROP 3DRUP THEN
-1 +L0OJP
Laop

Oct. 1979

1)

2)

et

CHAPTER 14

:+ IMIN SASK (PUSH FIRST NUMBER)
BEGIN SASK DUP 0 <
IF .''" MIN VALVE ='"" sSwAP . DROP 1
ELSE MIN 0 THEN
END 3

Note how both halves of the 1F branch leave a number on the
stack - | (if the terminating negative number is encountered) or

0 (if another number was compared). " This 0 or 1 is then the
<logical-condition> for the END word and only if the terminating
negative number was entered does the BEGIN - END loop stop.

This is a common programming practice in FORTH and the stack is a

convenient place to put the ''flag'" value.

: FIB DUP 3 <

IF . N MUST BE GREATER THAN 3'' DROP
ELSE 0 1 (FIRST TWO FIB NUM) o .
BEGIN DUP ., { PRINT CURRENT)

OVER OVER + ROT DROP
(COMPUTE NEXT IN SEQ.)
DUP 4 pick >
END 3DROP
THEN 3

1979

CHAPTER 15

1) s
2) :

3)

Ol
o.

L) :

00

?20DD/EV

?TIME

0 REAL

0 REAL
REAL

DISCR

0

QUAD C

I

E

T

FDASINE

EN 2 MoOD IF ,'" obp" ELSE ,['" EVEN'" THEN
60 M/MQOD 60 /MOD I
A
B
C
B F®? 3DUP F* 4.0 A Fa F*¥ C Fa F* F-
F: B F! A F! CR DISCR 3DUP FO=
F 3DROP .''" ONE REAL ROOT:"
B Fa FMINUS 2.0 A Fa F* F/ F.
LSE 3DUP FOK<
IF ."" TWO COMPLEX ROOTS "
." (REAL AND COMPLEX PARTS):"
B Fa FMINUS 2.0 A Fa F* F/ F.
FMINUS FSQRT 2.0 A Fa F* F/ F.
ELSE .' TWO REAL ROOTS:'" FSQRT 3DUP
B F@ FMINUS 3SWAP F+ 2.0 A Fa
F/ F.
B Fa FMINUS 3SWAP F- 2.0 A Fa
F/ F.
THEN
HEN 3
3DUP FABS 1.0 F=
IF 90.0 F*
ELSE 3DUP 3DUP 3DUP F* 1.0 3SWAP F-
FSQRT FDATN
3SWAP FO< IF 360.0 F- THEN
THEN
Oct.

F*

F*

1979

5)

6)

7)

CHAPTER 15

: FDACOS 3DUP 3DUP F* 1.0 3SWAP F—- FSQRT
FDASINE 3SWAP FO<

IF 180.0 3SWAP F- THEN H

: X**Yy 30VER 0.0 F<
1IF J' NEGATIVE NUMBER ERROR'' 3DROP 3DROP
ELSE 3SWAP FLN F* FEXP THEN

Note that when using this algorithm 212 = 4095.99922 and not 4096!
This is due to the inexactness of both floating-point numbers and the
exponential/logarithm functions. |If one knew that the exponent were
an integer then a combination of multiplies would generate the exact

answer.

1.0 3.0 F/ FCONSTANT 1/3
: FCUBERT 3DUP 0.0 F<
IF FMINUS 1/3 X**Y FMINUS
ELSE 1/3 X**Y THEN ;

Note the technique used to obtain the maximum precision available for
the infinite constant 0.333-+«+ By dividing 1.0 by 3.0 in the definition
you obtain the maximum precision available, regardless which computer

you are running on. |If, however, you were to enter
0.33333 FCONSTANT 1/3

you would not be obtaining the maximum precision on any computer with
more than 5 digits of precision. To a computer the numbers 0.3 and 0.33

are not equal!

Oct. 1979 c-17

CHAPTER 15

8)

9)

10)

1)

12)

:+ FROUND 0.5 F+ 3

: I**J) 2DUP SWAP SFLOAT FLN 4 PICK SFLOAT
F*¥ FEXP 3SWAP 3DROP FROUND SFIX 3

Note the complications that arise in converting two single-word integers
on the stack to floating-point, without storing either one in a
temporary location. Of course, if this were a frequent operation

one could define a new word to do it.

: CUBE DUP 0< IF MINUS 3 1I**%J MINUS
ELSE 3 1I**J THEN 3

The second definition is almost certainly preferable in all cases since
it requires only two multiplications and no conversion back and forth
to floating-point. Note also that one need not worry about the sign
with the second definition. Finally, the first definition will take
longer to execute and will be less precise since the exponential and
logarithm functions require time to execute and neither of these are

perfectly 'exact' (integer multiply will always be exact).

0.00001 FCONSTANT EPSILON
:+ SQROOT 3DUP FoOK
IF " NEGATIVE ARGUMENT'' 3DROP
ELSE 3DUP 0.5903 F* 0.4173 F+
BEGIN 30VER 30VER F/ 30VER F+ 0.5 F*
3SWAP 30VER F- FABS EPSILON F<
END 3SWAP 3DROP
THEN s

Oct. 1979

CHAPTER 15

13) 0.000001 FCONSTANT EPSILON
: ECALC 2.0 2.0 32767 3 DO 30VER 1.0 3SWAP F/

30VER F+ 3SWAP 30VER

F- FABS EPSILON F<

IF 3DUP 10 8 WwW.D. F.
SJUINY 1 L V" ITERATIONS'
EXIT THEN

3SWAP I SFLOAT F* 3SWAP

LOOP 3DROP 3DROP

The algorithm used is:

Prod = 2.0
o Oldsum = 2.0
Do 1 = 3, 32767

Newsum = Oldsum + (1/Prod)

If (|Newsum - Oldsum| < Epsilon) EXIT
Oldsum
Prod

'— Continue

Newsum

Prod * |

i

The upper limit on the DO loop (32,767) is set to the largest integer
value to guarantee that the loop is executed many times. In actuality,
the loop will terminate when the word EXIT is executed (when the
newsum has satisfactorily converged to the oldsum). This exercise is

a good example of stack manipulation and how it is hard to display in

an algorithm the true efficient use of the stack.

Oct. 1979 C-19

CHAPTER 15

14) : FACT DUP 0< OVER 7 > OR
1F JUN IS DUT OF RANGE'' DROP
ELSE DUP 2 < IF 1 SWAP (VALUE OF 0! AND 1!

ELSE DUP BEGIN 1- DUP ROT *
SWAP DUP 3 <

END
THEN
DROP ." FACTORIAL ="' ,
THEN H
15) Because 8! = 40,320 which exceeds the range of a single-word integer.

16)

2.71828182 FCONSTANT E

3.14159265 FCONSTANT PI

: N! SFLOAT 3DUP 2.0 F* PI F* FSQRT
30VER 3DUP E F/ 3SWAP X**y F*
6 4 w.D 3puP E. ." <"
30VER SFIX . 1 o< M
30VER 12.0 F* 1,0 F- 1.0 3SWAP F/
1.0 F+ F* E. 3DROP ;

Compare the definitions of E and PI with the definition of 1/3
in exercise 7 of this chapter. Since there are no rational formulas
for e and 7 we must specify each constant using as many digits of
precision (9 decimal digits for KPNO FORTH, Section 7.3) as provided
by the floating-point data structure. If this definition were used
on a computer with a different number of digits of precision then

the definitions for e and m should be changed accordingly.

c-20 Oct. 1979

CHAPTER 15

17) 0.0 REAL 1SUM (suM oF x[1])
0.0 REAL 2SUM (suM oF x[1]**2)
: STAT 0.0 1SUM F! 0.0 2SuUM F!
.'" HOW MANY NUMBERS? ' SASK DuUP
0 DO CRrR .'" 2" FASK 3DUP

1SUM Fa F+ 1SUM F!
3DUP F* 2SUM Fa F+ 2SUM F!
LOOP
DUP SFLOAT 1SUM Fa 3SWAP F/
CR .'"" MEAN = " F,
SFLOAT 3DUP 2SUM Fa F*
1SUM Fa 3DUP F* F-
3SWAP 3DUP 1,0 F- F* F/ FSQRT
CR " sTD DEV = " F. 3

18) The shortest and most elegant (and possibly least obvious) solution is to

rearrange the algorithm as follows:

r = a
Pp»a = b

b = r

r = (a mod b)

If (r = 0) then the answer is b, stop.

— Loop around

This is coded as

GCD BEGIN SWAP OVER MOD DUP 0= END
DROP . H

Oct. 1979 C-21

CHAPTER 15

18) Continued

19)

20)

C-22

The rearranging of the algorithm places the test for r = 0 at the end

of the loop which allows the use of the BEGIN - END loop. You

should confirm to yourself that rearranging the algorithm this way

does not affect the algorithm (i.e. - it still produces the right

answer).

GCD(2166,6099) = 57

2047 (>DIM DATA
0 CONSTANT NOP
16105 0 DATA ! 18291 1 DATA ! 14333 2 DATA !
17015 3 DATA ! 15280 4 DATA ! 5 ' NOP !
¢ M¢RMS 0.0 ¢ RMS SUM) 0.0 (MEAN SUM) NP
Da I DATA e SFLUAT F+ (UPDATE MEAN)

I DATA @ SFLUAT 3DUP Fx F+ (HMS)
LOOP NOP SFLOAT F/ FROUND SFIX . MEAN ="

3SwAP
35wAPY

NOP SFLOAT Fs/ FSQRT FROUND SFIX .* » RMS =" .

¢ RMEAN 0 (INITIAL MEAN) NUP 0
DO DUP I DATA @ SwWaP -
I v+ 7 =+
Logp . MEAN =" .

Oct.

1979

.
»

21) 0 variaBLe C
0 VARIABLE D
0 VARIABLE E
0 VARIABLE G
0 VARIABLE N
0 vVARIABLE X
0 VARIABLE 2
0 VARIABLE YEAR
¢ NEASTER DUP DUP YEAR !
19 MOD 1 + G !
100 / 1 + DUP DUP C 1
3 * 4 /7 12 - X1
8 x 5 + 25 / §5 - z
YEAR @ 5 * 4 / X @ - 10 = D1
Ge 11 * 20 + Z e + X@ - 30 MID DUP
0< IF 30 + THEN DUP DUP E !
25 = G @ 1 > AND SWAP 24 = Or
IF Ee@ 1 + E 1 THEN
44 E @ - DUP N ! 21 <
IF Ne 30 + N ! THEN
Ne DUP 7 + SWAP De + 7 MuD -
DUP DUP N ! 5 (¢ RETURN 2 COPIES OF N ON SFACK)
: EASTER NEASTER 31 >
IF ., " APRIL™ 31 - .
ELSE . ' MARCH" . THEN
" s YEAR @ . 3

Oct. 1979 C-23

APPENDIX D - FORTH GLOSSARY

This glossary is an alphabetically ordered list of all standard KPNO
FORTH words along with a brief description of the word. The alphabetical
ordering corresponds to the ordering of the ASC11 character set (Appendix A).
Additionally, a listing of the ASC11 ordering is given at the top of each
page for quick reference (since FORTH uses so many non-alphabetic characters).

Immediately following the name of a word, certain descriptor characters
may appear within parentheses. These denote some special action or charac-

teristics:

A The word belongs to the assembler vocabulary. A thorough des-
cription of the machine instructions is not given, instead the

reader should refer to the Varian 620/f Computer Handbook.

C The word may be used only within a colon-definition. A following
digit (CO or C2) indicates the number of memory cells used when
the word is compiled if other than one. A following + or - sign
indicates that the word either pushes a value onto the stack or
removes one from the stack during compilation. (This action is
not related to its action during execution and may be implementa-

tion dependent.)
E The word may not normally be compiled within a colon-definition.

P The word has its precedence bit set; it is executed directly,

even when encountered during compile mode.
oLD The word exists in KPNO FORTH versions 2.3 and earlier.
Following the optional descriptor characters, a symbolic execution of
the word is given, showing the parameters expected on the stack by the word

and the result left on the stack (if any). The following notation is used:

<ADDRESS> denotes a 15-bit machine address;

<BLOCK#> denotes a FORTH block number;

Feb. 1979 D-1

<BYTE-ADDRESS> denotes a 16-bit byte address;
<CHAR-CODE> denotes a 7-bit integer value for a ASC11 character

(see Appendix A);

<DW-VALUE> denotes a double-word integer value;
<FP-VALUE> denotes a floating-point value;
<L INE#> denotes a line number of a FORTH block;

<LOGICAL-VALUE> denotes a logical flag whereby a non-zero value

specifies true and a zero value specifies false;

<NAME> denotes a FORTH name, that is, a sequence of ASC11
characters whose first three characters and length

will be used to identify an entry in the dictionary;

<VALUE> denotes a single-word integer value.

Any symbol that does not appear in the above list is a single-word integer
value, unless the first two characters are DW (denoting a double-word integer

value) or FP (denoting a floating-point value).

This list is purposely not broken down into vocabularies (basic FORTH,
Utility words, etc.) in order that one be able to locate a word quickly,
without having to search many different lists. It is expected that the
greatest use of this list will be to aid someone who is going through a FORTH
listing, in being able to quickly locate a description of a word they are not
familiar with. Numerous lists are provided at the end of the glossary to
provide a logical grouping of words with similar functions.

Since this list is not broken down by vocabularies, one should not ex-
pect to find all of these words defined in basic FORTH! In fact, only a
small percentage of the words are defined in the basic FORTH system. In
order to find just where on a FORTH tape a particular word is defined, simply
obtain a cross reference of the tape (as with the XFORTH program, described
in Appendix B of the ''FORTH Systems Reference Manual'') and from the cross

reference find the block in which the word is defined. One is then able to

D-2 Feb. 1979

explicitly load the word into the dictionary. Naturally, this procedure
may have to be gone through more than once if the desired word requires other

words to be in the dictionary.

Feb. 1979 A NOTE: D-4 blank in original. p-3

mbstrick
Typewritten Text
NOTE: D-4 blank in original.

mbstrick
Typewritten Text

mbstrick
Sticky Note
Accepted set by mbstrick

mbstrick
Typewritten Text

FORTH GLOSSARY IMHSET () *+,-4/01234567891;<=>2AZ[\1"_

1BLOCK

tI/0

#D

#DEV

#MDEV

¥TER

Feb. 1979

<VALUE> <ADDRESS> !
STORE <VALUE> AT MEMORY LOCATION <ADDRESS?>.

CADDRESS> !t <NAME> cve

<ADDRESS> !t <NAME> can
START AN INTERRUPT PROCESSING COLON DEFINITION (SIMILAF TO 1),
<ADDRESS> SPECIFIES THE LOW-CORE INTERRUPT VECTOR ADDRESS»
DESIGNATING WHICH DEVICE'S INTERRUPTS ARE TO BE PROCESSED BY
THIS WORD. THE DEFINITION IS TERMINATED BY EITHER ;!C OR ;!
(SIMILAR TO 3). 31C WILL POP THE CAMAC BRANCH DRIVER BEFORE
RETURNING FROM THE INTERRUPT. SEE $! AND CHAPTER 16,

C

s we
. s

(0LD)
RENAMED BUFFER.

SAVES ALL THE SYSTEM FLAGS AND PARAMETERS THAT MUST BRE SAVED
PRIOR TO PERFORMING I/0 FROM AN INTERRUPT WORD. THIS WORD
INCLUDES THE EXECUTION OF FSAVE. AFTER PERFORMING THE I/0 THE
INTERRUPT WORD MUST EXECUTE 3I/0 TO RESTORE THESE FLAGS AND
PARAMETERS,

(A)
SETS THE VARIABLE MODE TO 1, SPECIFYING AN IMMEDIATE OPERAND
FOR THE NEXT MEMORY REFERENCE INSTRUCTION.

A VARTABLE INDICATING THE NUMBER OF DIGITS APPEARING AFTER THE
COMMA OR PERIODs FOLLOWING AN INPUT NUMBER CONVERSION.

(OLD)
RENAMED #MDEV,

A CONSTANT WHOSE VALUE INDICATES THE PRIMARY MASS STORAGE
DEVICE THAT FORTH IS RUNNING FROM:

0 = DISC

1 = TAPE

A CONSTANT WHOSE VALUE INDICATES WHAT TYPE OF TERMINAL IS BEING
USED:

TELETYPE

TEKTRONIX 4010

TEC

LEAR-STEGLER ADM-3A

TEXAS INSTRUMENTS TI-700

~N O Y
"o owou u

D-5

FORTH GLOSSARY IMASEN () k4, -4/ 01234567898 ;5<=>29AZI\1"_

$! <MODULE-ID> %! <ADDRESS?
CONVERTS THE CAMAC <MODULE-ID> INTO THE LOW-CORE INTERRUPT
VECTOR <ADDRESS> FOR THAT MODULE (REFER TO BLOCK 54 FOR A
LISTING OF THE STANDARD KPNO MODULE IDENTIFIERS). SEE !: AND
CHAPTER 16,

$2AREAD;
DEFINE A CAMAC I/0 WORD. SEE CHAPTER 16.

$ZAWRITES
DEFINE A CAMAC I/0 WORD. SEE CHAPTER 16,

$2READ;
DEFINE A CAMAC I/0 WORD. SEE CHAPTER 16.

$2WRITE;
DEFINE A CAMAC I/0 WORD. SEE CHAPTER 16,

$ACOMMAND ;
DEFINE A CAMAC I/0 WORD. SEE CHAPTER 16.

SAREAD; .
DEFINE A CAMAC I/0 WORD. SEE CHAPTER 16.
SAWRITE;
DEFINE A CAMAC 1/0 WORD. SEE CHAPTER 16.
$C
A CAMAC WORD TO SEND A CLEAR COMMAND TO THE MODULES IN CRATE 1.
$CN; SVALUE> S$CN; <NAME>
DEFINE <NAME> AS A CAMAC <MODULE-ID>., SEE CHAPTER 16,
$COMMAND;
DEFINE A CAMAC I/0 WORD. SEE CHAPTER 16,
$DBD
A CAMAC WORD TO DISABLE BRANCH DEMANDS AT THE CRATE CONTROLLER
LEVEL. SEE $EBD.
$DIR
A CAMAC WORD TO DISABLE INTERRUPTS AT THE BRANCH DRIVER LEVEL.
SEE SEIR.
$EBD
A CAMAC WORD TO ENABLE BRANCH DEMANDS AT THE CRATE CONTROLLER
LEVEL. SEF $DBD.
$EIR

A CAMAC WORD TD ENABLE CAMAC INTERRUPTS AT THE BRANCH DRIVER
LEVEL. SEE $DIR.

D-6 Feb. 1979

FORTH GLOSSARY IMHEE N () 4y =4 /01234567893 ;5<2>29AZ0N\]"_

$FX

<VALUE> 3$FX <RESULT?>
<VALUE> MUST BE A CAMAC F CODF IN THE RANGE QO THROUGH 31 AND
THIS VALUE IS THEN CONVERTED TO THE APPROPIATE EXC INSTRUCTION
(FOR USE IN A SEQUENCE OF MACHINE INSTRUCTIONS). THE WORD $FX
IS USUALLY FOLLOWED BY THE WORD » WHICH WILL PLACE THE EXC
INSTRUCTION INTO THE NEXT AVAILABLE DICTIONARY LOCATION.

$INITIALIZE

$NOI

$READ;

$REPLACE

$SETUP

tWRI

$Z

Feb.

TE;

1979

A CAMAC WORD TO INITIALIZE THE BRANCH DRIVER,

A CAMAC WORD TO CLEAR THE INHIBIT FLIP-FLOP 1IN THE CRATE
CONTROLLER.,

DEFINE A CAMAC I/0 WORD. SEE CHAPTER 16.

$REPLACE <WORD1> <CHAR-STRING>%¢

REPLACE ALL OCCURENCES OF <WORD1> BY THE SPECIFIED
<CHAR-STRING> WHEN THE WORD FIX IS EXECUTED. <WORD1> MAY NOT
CONTAIN ANY SPACES. <CHAR-STRING> STARTS WITH THE SECOND
CHARACTER FOLLOWING <WORD1> (THE FIRST CHARACTER FOLLOWING
<WORD1> MUST BE THE SPACE THAT TERMINATES <WORC1>) AND INCLUDES
ALL CHARACTERS» INCLUDING SPACESs UP TO BUT NOT INCLUDING THE
DOLLAR SIGN. SEE REPLACEs WINIT AND FIX.

A CAMAC WORD TO INITIALIZE AND RESET THE CAMAC SYSTEM.
DEFINE A CAMAC I/C WORD. SEE CHAPTER 16,

A CAMAC WORD TO SEND AN INITIALIZE COMMAND TO CRATE 1.

E<CHARACTER> <CHAR-CODE?>
THE AMPERSAND CONVERTS THE <CHARACTER> IMMEDIATELY FOLLOWING IT
TO ITS 7-BITs ASCII CODE (AN INTEGER VALUE IN THE RANGE O THRU
127). FOR EXAMPLE, THE SEQUENCE "eA™ WILL LEAVE THE OCTAl VALUE
101 ON THE STACK., REFER TO APPENDIX A FOR A COMPLETE LISTING OF
ALL ASCII CODES.

(P) ' <NAME> <ADDRESS?

PUSH THE ADDRESS OF THE PARAMETER FIELD OF <NAME> ONTO THE
STACK. A COMPILER DIRECTIVE, ' IS EXECUTED WHEN ENCOUNTERED IN
A COLON DEFINITION: THE ADDRESS OF THE PARAMETER FIELD OF
<NAME> IS FOUND IMMEDIATELY (AT COMPILATION) AND STORED IN THE
DICTIONARY (AFTER THE ADDRESS OF /LIT/) AS A LITERAL Td Bk
PLACED ON THE STACK AT EXECUTION TIME. WITHIN A COLON
DEFINITION, THE SEQUENCE "' <NAME>" IS IDENTICAL TO THE
SEQUENCE "™/LIT/ [' <NAME> ,]n,

()DIM

% %k

*/

x10%*%

¥*BLOCK

D-8

FORTH GLOSSARY IMESET () *+5—-,/0123456789:;<=>20A20\1"_

(P) (<STRING>)

THE LEFT PAREN DESIGNATES THE START OF A COMMENT AND ALL
CHARACTERS UP TO THE RIGHT PAREN ARE IGNORED. SINCE (IS A
FORTH WORD IT MUST BE TERMINATED BY A SPACEs, HOWEVER, THE
CLOSING PAREN NEED NOT BE PRECEDED BY A SPACE. uP T0O 1023
CHARACTERS MAY COMPRISE THE COMMENT.

SVALUE> ()DIM <NAME>
DEFINES A VECTOR OF SINGLE-WORD INTEGER VALUES. <VALUE> + 1
CELLS OF MEMORY ARE ALLOCATED TO THE NAMED VECTOR AND THEN
LEGITIMATE INDICES WILL BE IN THE RANGE O THROUGH <VALUE>,
INCLUSIVE, EXECUTING THE SEQUENCE "<INDEX> <NAME>" WILL PUSH
ONTO THE STACK THE ADDRESS OF THE SPECIFIED ENTRY IN THE
VECTOR.,

SVALUE1> <VALUE2> * <RESULT>
16-BITs» SIGNEDs INTEGER MULTIPLY, LEAVING THE SINGLE-WORD
RESULT ON THE STACK.

SVALUE> <POWER> *% <RESULT?>
INTEGER EXPONENTIATION. RAISE <VALUE> TO THE SPECIFIED <POWER>
AND LEAVE THE SINGLE-WORD INTEGER RESULT ON THE STACK.

SVALUE1> <VALUE2> *, <RESULT>
MULTIPLY 14-BIT FRACTIONS. IF <VALUE1> AND <VALUE2> ARE 14-BIT
FRACTIONS IN THE RANGE -2,000 TO 1.9999 THEN THE RESULT WILL
ALSO BE A 14-BIT FRACTION IN THIS RANGE.

SVALUEL1> <VALUE2> <VALUE3> %/ <RESULT>
CALCULATE <VALUEL1> * <VALUE2> / <VALUE3> AND LEAVE THE RESULT
ON THE STACK. THE INTERMEDIATE RESULT FROM THE MULTIPLICATION
IS5 31-BITS AND THIS WORD THEREFORE PROVIDES GREATER ACCURACY
THAN THE SEQUENCE "<VALUE1> <VALUE2> % <VALUE3> /", NOTE THAT
THE DIVISION IS AN INTEGER DIVISION WITH TRUNCATION AND ANY
REMAINDER IS LOST.

<FP=-VALUE> <POWER> *10%% <FP=-RESULT>
MULTIPLY THE <FP-VALUE> BY THE SPECIFIFED INTEGER POWER OF 10,
LEAVING THE FLOATING-POINT RESULT ON THE STACK.

(OLD)
RENAMED +BLOCK.

Feb. 1979

FORTH GLOSSARY IMESET () k45~,/0123456789:;<=>22A2L\1"_

+BLOCK

+CONVERT

+L00P

Feb.

1979

<VALUE1> <VALUEZ2> + <RESULT?>
16-BIT SIGNED INTEGER ADDITION, LEAVING THE RESULT ON THE
STACK.

<SVALUE?> <ADDRESS> +!
ADD <VALUE> TO THE CURRENT CONTENTS OF THE MEMORY LOCATION
POINTED TO BY <ADDRESS>., <VALUE> MAY BE A POSITIVE OR NEGATIVE
NUMBER. IDENTICAL TO THE SEQUENCE: M"<ADDRESS> Q3 <VALUE> +
<ADDRESS> !»,

<SVALUE> +BLOCK <BLOCK#>
ADD <VALUE?> TO THE NUMBER OF THE CURRENT BLOCK BEING
INTERPRETED AND LEAVE THE RESULT ON THE STACK. FOR EXAMPLE, IN
BLOCK 350 THE SEQUENCE "2 +BLOCK" WILL LEAVE THE NUMBER 352 ON
THE STACK.

SVALUE> <DW-VALUE> +CONVERT <COUNT?

CONVERTS THE <DW-VALUE?> INTO ITS SEQUENCE OF ASCII CHARACTERS
FOR QUTPUT BY THE WORDS WRITE OR TYPE. THE CURRENT NUMBER
CONVERSION BASE IS USED. <DW-VALUE> MUST BE A POSITIVE NUMBER
AND <VALUE> IS THEN USED TG SPECIFY THE SIGN: IF <VALUE> IS
NEGATIVE A MINUS SIGN WILL PRECEDE THE NUMBER. ON RETURN THE
BYTE ADDRESS OF THE CHARACTER STRING IS CCNTAINED IN IP AND THE
CHARACTER COUNT IS ON TOP OF THE STACK. THE VARIABLES FLD AND
DPL ARE USED TO SPECIFY THE TOTAL FIELD WIDTH AND NUMBER OF
DIGITS TO THE RIGHT OF THE RADIX POINT,

(C) <SVALUE> +L0OOP

ADD <VALUE> T0O THE CURRENT LO0OP INDEX (REFER TO THE WORDS DO
AND LOOP)e EXIT FROM THE LOOP IS MADE WHEN THE RESULTANT INDEX
REACHES QR PASSES THE LIMIT IF <VALUE> IS POSITIVE, OR WHEN THE
INDEX IS LESS THAN THE LIMIT IF <VALUE> IS NEGATIVE.

<VALUE>

STORE <VALUE?> INTO THE NEXT AVAILABLE DICTIONARY CELL»

ADVANCING THE DICTIONARY POINTER.

D-9

—~CONVERT

—INRy

"

«FIX

+FLOAT

«STRING

D-10

FORTH GLOSSARY IMETEY () *+,-4/01236456789:;5;<=>2AZ(\1"_

<VALUE1> <VALUE2> =~ <RESULT?>
16=-BIT SIGNED INTEGER SUBTRACTION LEAVING THE RESULT» <VALUELl>
- <VALUE2>, ON THE STACK.

() -—> .

CONTINUE INTERPRETATION WITH THE NEXT BLOCK. THIS WOKD IS
SIMILAR TO THE SEQUENCE "1 +BLOCK CONTINUED", HOWEVER —-=> IS A
COMPILER DIRECTIVE AND IS THEREFORE ESPECIALLY USEFUL WHEN
EXTENDING A COLON DEFINITION FROM ONE BLOCK TO THE NEXT,.

(oLD)
CLEANS UP THE STACK AFTER EXECUTING THE OLD VERSIONS AaF
+CONVERT AND WRITE.

{A) - <ADDRESS> ~INR»

AN ASSEMBLER MACRO WHICH GENERATES A SEQUENCE OF MACHINE
INSTRUCTIONS TO DECREMENT THE CONTENTS OF THE SPECIFIED MEMORY
ADDRESS. THE SEQUENCE OF INSTRUCTIONS GENERATED IS AN LDAs DAR
AND STA.

<VALUE> .
PRINT <VALUE> ON THE CURRENT OQUTPUT DEVICE (USUALLY THE
OPERATOR'S TERMINAL), FREE FORMAT, CONVERTED ACCORDING TO THE
CURRENT NUMBER BASE.

oM <STRING>"
OUTPUT THE CHARACTER STRING TO THE CURRENT OUTPUT DEVICE
(USUALLY THE OPERATOR'S TERMINAL). <STRING> STARTS WITH THE
SECOND CHARACTER FOLLOWING «" (THE FIRST CHARACTER FOLLOWING "
MUST BE A SPACE). THE MAXIMUM NUMBER OF CHARACTERS THAT MAY
COMPRISE <STRING> IS 127.

SFP=VALUE> FIX <DW-FRACTION-RESULT>
CONVERT THE <FP-VALUE> TO A DOUBLE-WORD FRACTION. TRUNCATION
WILL OCCUR IF THE ABSOLUTE VALUE OF <FP=-VALUE> IS GREATER THAN
OR EQUAL TO 1.0 AND A RESULT OF ZERD WILL BE RETURNED IF THE
ABSOLUTE VALUE OF <FP-VALUE> IS TOO SMALL (< 2%%-31),

<DW-FRACTION> FLOAT <FP-RESULT?>
<DW-FRACTION> IS CONVERTED TO A FLOATING-POINT VALUE.

<ADDRESS> LSTRING
EQUIVALENT TO THE SEQUENCE "COUNT WRITE"™, HOWEVERs +STRING MAY
BE EXECUTED FROM THE TERMINAL TO OUTPUT A STRING WHEREAS THE
SEQUENCE "COUNT WRITE™ MAY NOT (SINCE IP» WHICH IS SET BY
COUNT, MUST REMAIN INTACT FOR WRITE, AND IP IS CHANGED EACH
TIME A WORD IN A LINE OF TERMINAL INPUT IS PROCESSED).,

Feb. 1979

FORTH GLOSSARY INHSEY () %45-,/01234567893;<=>729A7Z0\1"_

/>

/4010

/CURSE

/LIT/

/M0D

Feb. 1979

<SVALUEL1> <VALUE2> / <RESULT>
16-BIT SIGNED INTEGER DIVIDE. THE RESULTs, <VALUE1> / <VALUEZ2>
IS LEFT ON THE STACK. NOTE THAT THE QUOTIENT IS TRUNCATED AND
ANY REMAINDER IS LOST. SEE /MOD.

SVALUE1> <VALUE2> /5 <RESULT>
DIVIDE <VALUE1> BY <VALUE2> LEAVING THE RESULT ON THE STACK. IF
BOTH DIVIDEND AND DIVISOR ARE 14-BIT FRACTIONS 1IN THE RANGE
=2.000 TO 1.9999 THEN THE QUOTIENT WILL ALSO BE A 14-BIT
FRACTION IN THE SAME RANGE. SEE *,,

A 2VARIABLE WHOSE VALUE INDICATES THE CURRENT PHYSICAL POSITION
OF THE 4010,

A 2VARIABLE WHOSE VALUE INDICATES THE CURRENT PHYSICAL POSITION
OF THE 4010 CROSS HAIR CURSORS.

(C) ILIT/
A REFERENCE TO /LIT/ IS AUTOMATICALLY COMPILED BEFORE EACH
LITERAL ENCOUNTERED IN A COLON DEFINITION. EXECUTION OF /LIT/
CAUSES THE CONTENTS OF THE NEXT DICTIONARY CELL TO BE PUSHED
ONTO THE STACK.,

<VALUE1> <VALUE2> /MOD <REMAINDER> <OQUOTIENT>
16-BIT SIGNED INTEGER DIVIDE. THE QUOTIENT FROM THE DIVISION,
<VALUEL1> / <VALUE2>, IS LEFT ON TOP OF THE STACK AND THE
REMAINDER IS LEFT BELOW. THE REMAINDER HAS THE SIGN OF THE
DIVIDEND.

D

11

0)

0)3

0<
O0<=
Q<>
U=
o>
0>=

D-12

FORTH GLOSSARY IMYSEV () k+9=-,7/0123456786913<2>29AZ1\ 1"

(A) <ADDRESS> 0) <RESULT?>

THE MOST SIGNIFICANT BIT OF <ADDRESS> IS SET TO 1, CHANGING THE
ADDRESS TO AN INDIRECT ADDRESSe NOTE THAT THIS WORD DESIGNATES
AN ADDRESS AS INDIRECT WHILE THE WORD I) DESIGNATES AN
INSTRUCTION AS INDIRECT.

0)S <ADDRESS?>
0)S IS THE STARTING ADDRESS OF A VECTOR OF ADDRESSES AND
INTERNAL VALUES USED BY FORTH. THE SEQUENCE "C)S <VALUE> +n
FORMS THE ADDRESS OF A SPECIFIC ELEMENT IN THE VECTOR WITH
<VALUE> CORRESPONDING TO:

0 THE ADDORESS OF THE CHARACTER OUTPUT SUBROUTINE. THIS
SUBROUTINE MUST BE CALLED USING AN IJMP INSTRUCTION.,
1 THE ADDRESS OF THE CHARACTER INPUT SUBROUTINE. THIS
SUBROUTINE MUST BE CALLED USING AN TJMP INSTRUCTION.
2 THE ADDRESS GF THE TERMINAL INTERROGATION

SUBROUTINE. THIS SUBROUTINE MUST BE CALLED USING AN
IJMP INSTRUCTION.

3 THE ADDRESS OF THE ROUTINE FETCH. THIS SUBROUTINE
MUST BE CALLED USING AN IJMP INSTRUCTION AND ON
RETURN THE A REGISTER CONTAINS THE CHARACTER WHICH
WAS POINTED TO BY THE BYTE-ADDRESS IN 1IP. I IS
INCREMENTED.,

4 THE ADDRESS Of THE SUBROUTINE DEPOSIT, THIS
SUBROUTINE MUST BE CALLED USING AN TIJMP INSTRUCTION.
ON ENTRY THE A REGISTER MUST CONTAIN THE CHARACTER
TO BE STORED IN THE LOCATICN POINTED TO BY THE BYTE
ADDRESS IN OP. OP IS INCREMENTED.

5 THE CURRENT CORE-SIZE USED BY FORTH,. THE INITIAL
VALUE O0OF 8192 (20000B) SPECIFIES 8K WORDS OF CORE
(ADDRESSES 0 THRU 8191).

) A BLOCK NUMBER OFFSET THAT IS ADDED TO EVERY BLOCK
NUMBER WHEN REFERENCING A DISC BLOCK. NORMALLY ZERO.

7 A POINTER TO THE PSEUDO-WORD USED FOR FLOATING-POINT

NUMBER CONVERSIONS. IT MUST Bt ZBERO IF THE
FLOATING-POINT CODE IS NOT IN THE DICTIONARY.,
8 THE WORD COUNT USED FOR DATA TRANSFERS TO THE DISC»

NORMALLY 512,

<VALUE> 0< <LOGICAL-VALUE?>

<VALUE> 0<= <LOGICAL-VALUE>

SYALUE> 0<> <LOGICAL-VALUE>

<VALUE> 0= <LOGICAL-VALUE?>

<VALUE> 0> <LOGICAL-VALUE>

<VALUE> 0>= <LOGICAL-VALUE?>
COMPARE <VALUE> AGAINST ZERO AND LEAVE A <LOGICAL-VALUE> OF
TRUE ON THE STACK IF THE INDICATED RELATION IS TRUE, OTHERWISE
A <LOGICAL-VALUE> OF FALSE IS LEFT ON THE STACK. THE WORD 0¢<>
TESTS FOR NOT EQUAL TO ZERG.

Feb. 1979

FORTH GLOSSARY YURBEY () R+, -,/0123456789:35<=>22A70\]1"_

1+

1+!

1LRL

20)IDIM

2%

2/

2CONSTANT

2DROP

2CUP

2Ls

Feb. 1979

<SVALUE> 1+ <RESULT>
EQUIVALENT TO THE SEQUENCE "1 4%,

<SADDRESS> 14!
ADC 1 TO THE CONTENTS OF THE MEMORY LOCATION <ADORESS>.
EQUIVALENT TO THE SEQUENCE "<ADDRESS> @ 1+ <ADDRESS> 1In,

<VALUE> 1~ <RESULT?>
EQUIVALENT TO THE SEQUENCE "n1 -w,

<ADDRESS> 1-!
SUBTRACT 1 FROM THE CONTENTS OF MEMORY LOCATION <ADDRESS>.
EQUIVALENT TO THE SEQUENCE “<ADDRESS> & 1- <ADDRESS> ivw,

(OLD)
RENAMED BYTE,

SVALUE> 2()DIM <NAME>
DEFINES A VECTOR OF DOUBLE-WORD VALUES. <VALUE> + 1 DOUBLE-WORD
CELLS 0OF MEMORY ARE ALLOCATED T0O THE NAMED VECTOR AND THEN
LEGITIMATE INDICES WILL BE IN THE RANGE O THROUGH <VALUE>,
INCLUSIVE. EXECUTING THE SEQUENCE "<INDEX> <NAME>" wILL PUSH
ONTO THE STACK THE ADDRESS OF THE SPECIFIED ENTRY IN THE
VECTOR,

SVALUE> 2% <RESULT?
EQUIVALENT TO THE SEQUENCE "2 xn,

SVALUE> 2/ <RESULT>
EQUIVALENT TO THE SEQUENCE w2 /n,

<DW=VALUE> 2CONSTANT <NAME>
DEFINE THE WORD <NAME> WHICH WHEN EXECUTED WILL PUSH ONTO THE
STACK ITS DOUBLE-WORD VALUE. THE VALUE OF <NAME> IS INITIALIZED
TO <DW=-VALUE>, THE VALUE OF <NAME> MAY BE CHANGED BY EXECUTING
THE SEQUENCE "<DW-VALUE> ' <NAME> D!m,

<DW=VALUE> 2DRQP
DROP THE TOP TWO VALUES FROM THE STACK. THE TOP TwO VAL 'JES MAY
BE TWOD SINGLE-WORD VALUES OR (USUALLY) A DOUBLE-WORD VAL UE.

<DW-VALUE> 2DUP <DW=-VALUE> <DW-VALUE>
DUPLICATE THE TOP TWO VALUES ON THE STACK., THE TOP TWO VALUES
MAY BE TWO SINGLE~WORD VALUES OR (USUALLY) A DOUBLE-WORD VALUE.

<DW-VALUE> <SHIFT=COUNT> 2LS <DW-RESULT>
ROTATE THE <DW-VALUE> LEFT OR RIGHT. IF THE <SHIFT=COUNT> IS
POSIVIVE THE SHIFT IS A LOGICAL ROTATE LEFT WHILE IF THE
SSHIFT-COUNT> IS NEGATIVE THEN THE SHIFT IS A LOGICAL ROTATE
RIGHT.

2M*

20OVER

2PICK

2ROLL

2ROT

2SET

2SWAP

2VARIABLE

FORTH GLOSSARY IMETEY ()% 4,-,/01234567898;5;<3>2AZ[\]1"_

<DW-VALUE> <VALUE> 2M* <DW-RESULT?
MULTIPLY THE SINGLE-WORD VALUE ON TOP OF THE STACK BY THE
DOUBLE-WORD VALUE BELOWs LEAVING THE DOUBLE-WORD RESULT ON TOP
OF THE STACK. SEE M¥,

<DW-VALUE1l> <DW-VALUE2> 20VER
<DW-VALUE1> <DW-VALUEZ2> <DW~VALUELl>
PUSH A COPY OF <DW-VALUE1l> ONTO THE TOP OF THE STACK, WITHOUT
REMOVING ANY WORDS FROM THE STACK.

<INDEX> 2PICK <DW-VALUE>
<INDEX> SPECIFIES A LOCATION ON THE STACK (1 SPECIFIES THE TOP
OF THE STACKs 2 IS THE NEXT CELL ON THE STACK, ETC) AND A COPY
OF THE DOUBLE-WORD VALUE STARTING AT THIS LOCATION IS PUSHED
ONTO THE TOP OF THE STACK. THE SEQUENCE ™3 2PICKM" IS EQUIVALENT
TO 20VER.

<SINDEX> 2ROLL
<INDEX> SPECIFIES A DOUBLE-WORD POSITION ON THE STACK (1
SPECIFIES THE DOUBLE-WORD INTEGER ON TOP OF THE STACK, 2 THE
DOUBLE-WORD INTEGER BELOWs ETC) AND THIS DOUBLE-WORD VALUE IS
MOVED TO THE TOP OF THE STACK WITH ALL DOUBLE-WORD VALUES IN
BETWEEN BEING MOVED DOWN ONE POSITION.

<DW-VALUE1> <DW-VALUE2> <DW-VALUE3> 2ROT
<DW-VALUEZ2> <DW-VALUE3> <DW-VALUELl>
ROTATE THE TOP THREE DOUBLE-WORD VALUES ON THE STACK.,
<DW-VALUE1> IS MOVED TO THE TOP OF THE STACKs <DW-VALUE3> MOVES
FROM THE TOP TO THE SECOND POSITION AND <Dw-VALUEZ2> MOVES FROM
THE SECOND POSITION TO THE THIRD.

<VALUE1> <ADDRESS1> <VALUEZ2> <ADDRESS2> 25ET <NAME>
DEFINES THE WORD <NAME> WHICH,» WHEN EXECUTED, WILL STORE
<SVALUEL> AT <ADDRESS1> AND <VALUE2> AT <ADDRESS2>.

<DW-VALUE1l> <DW-VALUE2> 2SWAP
<DW-VALUE2> <DW-VALUE1l>
SWAP THE TWO DOUBLE-WORD VALUES ON TOP OF THE STACK.

<DW=-VALUE> 2VARIABLE <NAME>
DEFINE THE WORD <NAME> WHICH, WHEN EXECUTED, WILL PUSH ONTO THE
STACK THE ADDRESS DOF <NAME>'S VALUE. THE VALUE OF THE VARTIABLE
IS INITIALIZED TO <DW-VALUE>. THE SEQUENCE "<NAME> Da" WILL
PUSH THE VALUE OF THE VARIABLE ONTO THE STACK AND THE SEQUENCE
"<PW-VALUE> <NAME> D!"™ WILL STORE <DwW-VALUE> AS THE VARIABLE'S
NEW VALUE.

Feb. 1979

FORTH GLOSSARY IMHBEY () *+4,-,/01234567892;3;<=>2AZ(\]1"_

3()0

IM

3DROP

3DUP

30VE

3P1IC

3R0OL

3ROT

3SWA

Feb.

R

K

L

P

1979

<SVALUE> 3()DIM <NAME>
DEFINES A VECTOR OF FLOATING=POINT VALUES. <VALUE> + 1
FLOATING-POINT CELLS OF MEMORY ARE ALLOCATED TO THE NAMED
VECTOR AND THEN LEGITIMATE INDICES WILL BE IN THE RANGE O
THROUGH <VALUE>, INCLUSIVE. EXECUTING THE SEQUENCE "<INDEX>
<NAME>" WILL PUSH ONTD THE STACK THE ADDRESS OF THE SFECIFIED
ENTRY IN THE VECTOR.,

<FP-VALUE> 3DROP
DELETE THE TOP THREE VALUES FROM THE STACK. THE TOP THREE
VALUES USUALLY COMPRISE A SINGLE FLOATING-POINT NUMBER BUT MAY
ALSO CONSIST OF THREE SINGLE-WORD VALUES OR A DOUBLE-WORD VALUF
AND A SINGLE-WORD VALUE,

<FP-VALUE> 3DUP <FP-VALUE> <FP-VALUE> '
DUPLICATE THE TOP THREE VALUES ON THE STACK. THE TOP THREE
VALUES USUALLY COMPRISE A SINGLE FLOATING-POINT NUMBER BUT MAY
ALSO CONSIST OF THREE SINGLE-WORD VALUES OR A DOUBLE-WORD VALUE
AND A SINGLE-WORD VALUE.

<FP-VALUELl> <FP-VALUE2> 30VER
<FP-VALUE1> <FP-VALUE2> <FP-VALUEL>
PUSH A COPY OF <FP-VALUEL1> ONTO THE TOP OF THE STACK, WITHOUT
REMOVING ANY WORDS FROM THE STACK.

<INDEX> 3PICK <FP=-VALUE?>
<INDEX> SPECIFIES A LOCATIGN ON THE STACK (1 SPECIFIES THE TQOP
OF THE STACK, 2 IS THE NEXT CELL ON THE STACK, ETC) AND A COPY
OF THE FLOATING-POINT VALUE STARTING AT THIS LOCATION IS PUSHED
ONTO THE TOP OF THE STACK. THE SEQUENCE "4 3PICK"™ IS EQUIVALENT
TO 30VER.

<INDEX> 3ROLL
<INDEX> SPECIFIES A FLOATING-POINT POSITION ON THE STACK (1
SPECIFIES THE FLOATING-POINT VALUE ON TOP OF THE STACK, 2 THE
FLOATING-POINT VALUE BELOWs, ETC) AND THIS FLOATING-POINT VALUE
IS MOVED TO THE TOP OF THE STACK WITH ALL FLOATING-POINT VALUES

IN BETWEEN BEING MOVED DOWN ONE POSITION,

<FP-VALUE1l> <FP=-VALUE2> <FP-VALUE3> 3RQOT
<FP-VALUE2> <FP-VALUE3> <FP-VALUE1l>
ROTATE THE TOP THREE FLOATING-POINT VALUES ON THFE STACK.
SFP-VALUE1> IS MOVED TO THE TOP OF THE STACKs <FP-VALUE3> MQVES
FROM THE TOP TO THE SECOND POSITION AND <FP-VALUE2> MOVES FRQOM
THE SECOND POSITION TO THE THIRD.

SFP-VALUE1> <FP-VALUE2> 3SWAP

<FP-VALUE2> <FP-VALUEl>
SWAP THE TWO FLOATING-POINT VALUES ON TOP OF THE STACK.,

D-15

:ORX

-e

-,
-
(%]

sCODE

3 S

D-16

FORTH GLOSSARY IVHSEY () ¥+45~0/0123456789:;<2>29AZ0\1"_

P OSNAME> see
START A COLON DEFINITION, THAT IS CREATE A DICTIONARY ENTRY
THAT WILL DEFINE <NAME> AS EQUIVALENT TO THE SEQUENCE OF WORDS
BETWEEN <NAME> AND THE SEMICOLON. THE COMPILATION MODE FLAG IS
SET AND THE CONTEXT VOCABULARY IS SET TO THE CURRENT
VOCABULARY. THE COLON DEFINITION IS TERMINATED BY THE
SEMICOLON.

PORX eee

INITIATES AN ANONYMOUS (ORPHAN) COLON DEFINITIONs PLACING ITS
ADDRESS IN PSEUDO-VECTOR ENTRY X, FOR SUBSEQUENT ADOPTION BY
THE WORD ADOX. AN ANONYMOUS COLON DEFINITION IS SIMILAR TO A
STANDARD COLON DEFINITION, HOWEVERs, IT MAY BE EXECUTED ONLY
FROM A COLON DEFINITION (USING ADOX) NOT FROM THE TERMINAL AND
THREE MEMORY CELLS ARE SAVED SINCE THE ANONYMOUS DEFINITION HAS
NO NAME. SEE ADOX AND P=-VX.

(CyP)
TERMINATE A COLON DEFINITION AND RESET THE COMPILATION MODE
FLAG.

(C}P) H <NAME1> 20 ;= s e ;

TERMINATE A DEFINING WORD <NAME1>., THE DEFINING WORD <NAME1l>
CAN SUBSEQUENTLY BE EXECUTED TO DEFINE A NEW WORD» <SNAME2>.
WHEN <NAME2> TS EXECUTED IT WILL CAUSE THE WORDS BETWEEN ;: AND
3 TO B8E EXECUTED WITH THE CONTENTS OF THE FIRST PARAMETER OF
<NAME2> ON THE STACK.

(C) 33

THIS WORD MAY BE USED TO TERMINATE A COLON DEFINITION IN PLACE
arF ;. WHEN THE COLON DEFINITION TERMINATED BY ;S COMPLETES
EXECUTION (I.Es - THE WORD ;S IS EXECUTED) THE LOADING OF THE
CURRENT BLOCK WILL TERMINATE AS IF THE WORD ;S WERE EXECUTED.
THIS WORD IS NOT, IN GENERALs, EQUIVALENT TO THE SEQUENCE ";
;Sll.

(C’P) H <NAME1> [} ;CDDE LI I]

STOP COMPILATION AND TERMINATE A DEFIMING WORDs <NAMEl>, THE
CONTEXT VOCABULARY IS SET TO THE ASSEMBLER VOCABULARY. WHEN
<NAMEY1> IS EXECUTED TO DEFINE A NEW WORD <NAMEZ2>, THE EXECUTION
ADDRESS OF <NAME2> WILL POINT TO THE ASSEMBLER CODE SEQUENCE"
FOLLOWING THE ;CODE OF <NAME1>. SUBSEQUENT EXECUTION OF <NAME2>
WILL CAUSE THIS MACHINE CODE SEQUENCE TO BE EXECUTED.

(E)
STOP INTERPRETATION OF A SYMBOLIC BLOCK.

Feb. 1979

FORTH GLOSSARY

<=
<>

>z

<< X

<T>

Feb.

1979

INHSE () *45-,/01234567892;5<=2>29A20\1"_

<VALUELl> <VALUEZ2> < <LOGICAL-VALUE>
<SVALUE1> <VALUEZ2> <= <LOGICAL-VALUE>
<SVALUEL1> <VALUEZ2> <> <LOGICAL-VALUE>
<SVALUEL1> <VALUE2> = <LOGICAL-VALUE?>
<VALUE1l> <VALUE2> > <LOGICAL-VALUE>
<VALUEL1> <VALUEZ2> >= <LOGICAL-VALUE?>
COMPARE <VALUE1> AND <VALUE2> AND LEAVE A <LOGICAL-VALUE> OF

TRUE ON THE STACK IF THE INDICATED RELATION IS TRUE,
LEAVE A <LOGICAL-VALUE> OF FALSE ON THE STACK. THE
TESTS FOR NOT EQUAL.

OTHERWISE
WORD <>

(A)
FIX A
2> Xe

<ADDRESS> <<LX

MEMORY REFERENCE INSTRUCTION'S RELATIVE ADDRESS. SEE

(A)

A CONSTANT WHOSE VALUE IS THE ADDRESS OF A CORE LGCATION
AVAILABLE FOR TEMPORARY STORAGE. THE CONTENTS OF THIS CORE
LOCATION WILL BE SAVED DURING INTERRUPT PROCESSING.

(A) =2 <ADDRESS?>

PUSHES ONTO THE STACK THE STARTING ADDRESS OF A
BINARY CONSTANTS USED INTERNALLY BY FORTH. DO NOT CHANGE THESE
VALUES. THESE VALUES ARE ALL IN LOW CORE AND ARE THEREFORE
USEFUL IN MACHINE LANGUAGE WORDS WHEN THE GIVEN CONSTANT NEEDS
TO BE REFERENCED BY A SINGLE WORD INSTRUCTION. THE CONSTANTS
AND HOW TO ACCESS THEM IS AS FOLLOWS:

VECTOR QOF

=2 2 - 9 LEAVES 1000008 ON THE STACK
=2 1~ 2 LEAVES 0777778 ON THE STACK
=2 2 LEAVES 2 ON THE STACK
=2 1+ 2 LEAVES 3 ON THE STACK
22 2 + 2 LEAVES &4 ON THE STACK
=2 3 + 3 LEAVES 5 ON THE STACK
=2 4 + 3 LEAVES 6 ON THE STACK
=2 5 + 9 LEAVES 7 ON THE STACK

> X

>BCD

>R

?DEF

2DUP

D-18

FORTH GLOSSARY IMRIEN () *%45,-4./0123456789:;<=>29AZ(\]1"_

(a)

A WORD USED IN GENERATING MACHINE LANGUAGE FORWARD REFERENCES.
THE CURRENT VALUE OF THE DICTIONARY POINTER IS STORED IN THE
CORRESPONDING PSEUDO-VECTOR TABLE ENTRY (SEE P-VX) AND A VALUE
OF ZERO IS PUSHED ONTO THE STACK. THE ADDRESS THAT IS SAVED IN
THE PSEUDO-VECTOR TABLE IS ASSUMED TO POINT TO A VARIAN MEMORY
REFERENCE INSTRUCTION, THE VALUE OF ZERO THAT IS PUSHED ONTO
THE STACK WILL THEN BE USED AS THE MEMORY ADDRESS OF THE MEMORY
REFERENCE INSTRUCTIGN, GUARANTEEING THAT THE SINGLE-WORD
VERSION OF THE INSTRUCTION WILL BE GENERATED. THE WORD <<LX
MUST THEN BE EXECUTED LATER IN THE COMPILATION TO CHANGE THE
MEMORY REFERENCE INSTRUCTION TO AN ADDRESSING MODE OF &
(RELATIVE TO THE P REGISTER) AND TO SET THE RELATIVE ADDRESS OF
THE INSTRUCTION TO THE DIFFERENCE OF THE SPECIFIED ADDRESS (THE
<ADDRESS> PUSHED ONTO THE STACK BEFORE <<LX IS EXECUTED) AND
THE MEMORY ADDRESS THAT >>LX STORED IN THE PSEUDO VECTOR TABLE.
THIS LENGTHY PROCEDURE IS REQUIRED TO GENERATE FORWARD
REFERENCES USING FORTH!'S SINGLE PASS STRUCTURE AND THE VARIAN
MACHINE INSTRUCTIONS.

A VARTABLE WHOSE VALUE SPECIFIES WHETHER THE 7-TRACK MAG TAPE
INPUT AND QUTPUT IS TO BE BINARY 0OR BCD. A VALUE OF ZERQD
SPECIFIES BINARY (3 TAPE FRAMES PER WORD, ALL 16-BITS OF EVERY
WORD WITH TWO HIGH ORDER BITS OF ZERO) WHILE A NON=-ZERO VALUE
SPECIFIES BCD (2 TAPE FRAMES PER WORDs LEAST SIGNIFICANT
12-BITS OF EVERY WORD). THE DEFAULT VALUE OF >BCD IS ZERQ AND
AFTER EVERY INPUT OR OUTPUT THE VALUE IS RESET TO ZERO. SEE
MTRs MTREAD, MTW AND MTWRITE.

(C) <SVALUE> >R
PUSH <VALUE> ONTO THE RETURN STACK. SEE 1 AND R>,

<ADDRESS> 2
PRINT THE VALUE CONTAINED AT <ADDRESS> ON THE CURRENT QUTPUT
DEVICE (usuaLLy THE OPERATOR'S TERMINAL), FREE FORMAT,
CONVERTED ACCORDING TO THE CURRENT NUMBER BASE. EQUIVALENT TO
THE SEQUENCE "<ADDRESS> 3 .",

(3Lo) ?DEF <NAME> <LOGICAL-VALUE>
RENAMED FIND.

<VALUE> ?2DUP IF v THEN
IF <VALUE> IS NON-ZERD (WHICH WILL BE INTERPRETED AS A L3GICAL
VALUE OF TRUE) THEN <VALUE> IS DUPLICATED ON THE STACK»
UTHERWISE <VALUE> IS NOT DUPLICATED. USE OF THIS WORD ALLOWS
ONE TO OMIT THE "ELSE DROP™ CLAUSE FORM THE IF STATEMENT, WHEN
IT IS DESIRED TO EXECUTE THE IF STATEMENT ONLY IF <VALUE> IS
NON=-ZERD.

Feb. 1979

FORTH GLOSSARY INESEN() ¥+, -4 /01234567892 ;<=>29A2(\1"_

TEOF

2LEF

2MTREADY

20N

7PB

?2TER

21/0

2STA

Feb.

T

TE

1979

?2EQ0F <LOGICAL-VALUE>
TESTS THE MAG TAPE AND RETURNS A <LOGICAL-VALUE> OF TRUE IF THE
TAPE IS CURRENTLY POSITIONED AT AN END-OF~-FILE MARK.

2LEFT <CELLS?>
CALCULATES THE NUMBER OF MEMORY CELLS LEFT IN THE MEMORY
OVERLAY REGION,

?MTREADY <LOGICAL-VALUE?>
TESTS THE MAG TAPE FOR READY AND ONLINE AND IF THE TAPE DRIVE
IS NOT READY THE MESSAGE "TAPE NOT READY"™ WILL BE QUTPUT TO THE
TERMINAL AND THE WORD WAITS FOR THE TAPE DRIVE TO BE PLACED
ONLINE.

20N <LOGICAL-RESULT>
PUSH A <LOGICAL-RESULT> OF TRUE ONTO THE STACK IF THE LAST
TOGGLE OF ANY CAMAC DISPLAY PANEL PUSHBUTTON'S STATUS BIT
TURNED THE STATUS BIT ON» OTHERWISE A <LOGICAL-RESULT> OF FALSE
IS PUSHED ONTO THE STACK. SEE PBARRAY, PLARRAY), PLTOGGLES
PSTOGGLEs, PTOGGLEs ON! AND OFF!.

<PUSHBUTTON#> 2?PB <LOGICAL-RESULT>
PUSH A <LOGICAL-RESULT> OF TRUE ONTO THE STACK IF THE SPECIFIED
CAMAC DISPLAY PANEL PUSHBUTTON'S STATUS BIT IS SET, OTHERWISE A
SLOGICAL-RESULT?> OF FALSE IS PUSHED ONTO THE STACK.
<PUSHBUTTON> IS AN INTEGER VALUE IN THE RANGE 0 THROUGH 31. SEE
PBARRAY, ON!, OFF!, PSTOGGLE AND PTOGGLE.,

?2Q <LOGICAL-VALUE?>
A CAMAC WORD TO TEST THE Q-RESPONSE. THE <LOGICAL-VALUE > PUT ON
THE STACK CORRESPONDS TO WHETHER THE Q-RESPONSE IS TRUE OR
FALSE.

?TER <CHAR-CODE?>
PUSHES ONTO THE STACK THE 7-BIT ASCII CHARACTER CODE OF THE
LAST CHARACTER ENTERED AT THE TERMINALs OR ZERD IFf NO CHARACTER
HAS BEEN ENTERED. SEE APPENDIX A FOR A LISTING OF THE ASCII
CODES.

<ADDRESS> @ <VALUE>
FETCH THE CONTENTS OF THE MEMORY LOCATION <ADDRESS> AND PUSH IT
GONTO THE STACK.

RESTORES THE SYSTEM FLAGS AND PARAMETERS THAT WERE SAVED BY
{I/0s PRIOR TO PERFORMING I/0 FROM AN INTERRUPT HANDLING WORD.
#I/0 INCLUDES THE EXECUTION OF FRESTORE. SEE !I1/0.

?STATE <LOGICAL-VALUE?>
PUSHES ONTO THE STACK A LOGICAL-VALUE WHICH IS TRUE ONLY 1IF
FORTH IS IN COMPILATION MODE. THIS WORD IS USEFUL ONLY IN
COMPILER DIRECTIVE WORDS.

D-19

A+

A-SAVE

AO

ABORT

ABORT

ABS

ACURSOR

ADD»

D-20

FORTH GLOSSARY IMESEV () %X4,~-4./0123456789: ;<=>2A2(\1"_

(A)

A CONSTANT WHOSE VALUE SPECIFIES THE JUMP CONDITION FOR THE "A
REGISTER >= 0" TEST. USUALLY FOLLOWED BY IFs ENDs JIF, JIFM, OR
XIFs o« REFER TO PAGE 20-18 OF THE VARIAN HANDBOOK, SEE NOT.

(a)

A CONSTANT WHOSE VALUE SPECIFIES THE JUMP-CONDITION FOR THE "A
REGISTER < O"™ TEST. USUALLY FOLLOWED BY IFs ENDs» JIF, JIFM, 0OR
XIFs o REFER TO PAGE 20-18 OF THE VARIAN HANDBOOK. SEE NOT.

A-SAVE <NAME?>
WRITES THE CURRENT OVERLAY TO DISC, STARTING AT THE BLOCK
NUMBER CONTAINED IN THE VARIABLE 0-BLK. O-BLK IS THEN UPDATED
ACCORDINGLY. <NAME> IS ENTERED INTO THE DICTIONARY SUCH THAT
SUBSEQUENT EXECUTION OF <NAME> WILL PUSH THE STARTING BLOCK
NUMBER OF THE OVERLAY ONTO THE STACK (SEE 0-LOAD). SEE O-SAVE.

(A)

A CONSTANT WHOSE VALUE SPECIFIES THE JUMP-CONDITION FOR THE A
REGISTER = 0" TEST. USUALLY FOLLOWED BY IF» ENDs JIFs JIFM, OR
XIFy,» REFER TO PAGE 20-18 OF THE VARIAN HANDBOOK. SEE NOT.

ENTER THE ABORT SEQUENCE WHICH WILL CLEAR BOTH THE STACK AND
THE RETURN STACK, PRINT THE ABORT MESSAGE w2S"™ AND RETURN
CONTROL TO THE OPERATOR'S TERMINAL. SEE QUIT.

(A)

A CONSTANT WHOSE VALUE IS THE MEMORY ADDRESS OF THE INTERPRETER
ROUTINE TO PRODUCE A "?Q" ABORT MESSAGE. THE NORMAL SEQUENCE IS
"ABORT JMP,", HOWEVER, THE FOLLOWING SEQUENCES WILL PRODUCE THE
SPECIFIED ABORT:

ABORT 1- JMP» WILL PRODUCE 7R ABQORT
ABORT 2 - JMP, WILL PRODUCE ?S ABORT
ABORT 3 - JMP, WILL PRODUCE ?T ABORT
ABORT &4 - JMP, WILL PRODUCE U ABORT
ABJRT 5 - JMP, WILL PRODUCE V. ABORT
ABORT 6 = JMP, WILL PRODUCE W ABORT
ABORT 7 - JMP, WILL PRODUCE 72X ABORT
ABORT 10 - JMPy WILL PRODUCE ?2Y ABORT
ABORT 11 - JMP, WILL PRODUCE ?Z ABORT

SVALUE> ABS <RESULT?>
FORM THE ABSOLUTE VALUE OF <VALUE> AND LEAVE IT ON THE STACK.

ACURSOR <STATUS> <Y=POSN> <X=~POSN>
TURNS ON THE 4010 CROSS HAIR CURSORS AND WAITS FOR THE OPERATOR
T0 ENTER ANY CHARACTER. THREE SINGLE-WORD INTEGERS ARE
RETURNED» THE X AND Y POSITIONS OF THE CURSORS AND THE 4010
STATUS WORD.

(A) <ADDRESS> ADD»
THE ASSEMBLER MNEMONIC FOR THE VARIAN ADD INSTRUCTION (ADD
MEMORY TO THE A REGISTER).

Feb. 1979

FORTH GLOSSARY INHSEY ()%+45-,/0123456789:5<=>2AZ[\)"_

ADM)

ADOPT

ADOX

ANA,

AND

ASHIFT

ASL»

ASLB)»

ASR,

ASRB»

ASK

ASSEMBLER

Feb. 1979

(a) <ADDRESS> ADM,»

AN ASSEMBLEP MACRO WHICH GENERATES A SEQUENCE OF MACHINE
INSTRUCTIONS TO ADD THE CONTENTS OF THE A REGISTER TO THE
CONTENTS OF THE SPECIFIED MEMORY LOCATION, THE SEQUENCE OF
INSTRUCTIONS GENERATE IS ADD AND STA,

(3LD) ADOPT
SAME AS » EXECPT THAT ADOPT IS A COMPILER DIRECTIVE,

(C) ADOX

ADOPT AN ANONYMOUS COLON DEFINITION OR CODE DEFINITION BY
PLACING THE ADDRESS CONTAINED IN PSEUDO-VECTOR ENTRY X INTO THE
DICTIONARY., SEE P-VXs :0RX AND ORCX.

(A) <ADDRESS?> ANA,
THE ASSEMBLER MNEMONIC FOR THE VARIAN ANA INSTRUCTICN (LOGICAL
AND MEMORY WITH THE A REGISTER).

SVALUE1> <VALUE2> AND <RESULT>
CALCULATE THE BITWISE LOGICAL-AND OF <VALUEL1> AND <VALUE2>,
LEAVING THE RESULT ON THE STACK.

<DW-VALUE> <SHIFT-COUNT> ASHIFT <DW=-RESULT>
ARITHMETIC SHIFT THE <DW-VALUE>, LEFT FOR A POSITIVE
SSHIFT-COUNT> AND RIGHT FOR A NEGATIVE <SHIFT=-COUNT>., THIS WORD
MAY BE USED TO MULTIPLY AND DIVIDE A DOUBLE-WORD VALUE BY A
PUWER OF 2.

(A) <SSHIFT-COUNT> ASL,
THE ASSEMBLER MNEMONIC FOR THE VARIAN ASLA INSTRUCTION
(ARITHMETIC SHIFT LEFT THE A REGISTER),

(A) <SHIFT-COUNT> ASLB,
THE ASSEMBLER MNEMONIC FOR THE VARIAN ASLB INSTRUCTION
(ARITHMETIC SHIFT LEFT THE B REGISTER).

(A) <SHIFT-COUNT> ASR»
THE ASSEMBLER MNEMONIC FOR THE VARIAN ASRA INSTRUCTION
(ARITHMETIC SHIFT RIGHT THE A REGISTER).

(A) <SHIFT-COUNT> ASRB,
THE ASSEMBLER MNEMONIC FOR THE VARIAN ASRB INSTRUCTION
(ARITHMETIC SHIFT RIGHT THE B REGISTER).

(oLD) ASK <VALUE>
REQUEST THE INPUT OF A NUMBER FROM THE TERMINAL.

(P
SWITCH THE CONTEXT POINTER SC THAT DICTIONARY SEARCHES WILL
BEGIN IN THE ASSEMBLER VOCABULARY. THE ASSEMBLER VOCABULARY IS
ALWAYS CHAINED TO THE CURRENT VOCABULARY.,

D-21

B)

Ba

BoO

BASE

BEGIN

BEGIN,

BELL

D-22

FORTH GLOSSARY INYSEN (N %4,-,/0123456789:;<s>29A72[\1"_

<VALUE> <BYTE-ADDRESS> B!
STORE THE LEAST SIGNIFICANT 8-BITS OF <VALUE> AT THE BYTE OF
MEMORY POINTED TO BY <BYTE~ADDRESS?>,

(A)
SETS THE VARTIABLE MODE TO 6, SPECIFYING INDEXING OFF 1YHE B
REGISTER FOR THE NEXT MEMORY REFERENCE INSTRUCTION,

<VALUE> B.
BINARY OQUTPUT, QUTPUT <VALUE> AS A BINARY (BASE 2) NUMBER,
UNSIGNED AND PRECEDED BY A BLANK ON THE CURRENT OUTPUT DEVICE
(USUALLY THE DPERATOR'S TERMINAL). THE FORMAT SPECIFICATIONS
GIVEN BY THE VARIABLES FLD AND DPL ARE OBSERVED. BASE IS NOT
CHANGED.

<BYTE-ADDRESS> Ba <RESULT?>
FETCH THE 8-BIT BYTE FROM THE BYTE OF MEMORY POINTED TO BY
<BYTE-ADDRESS> AND LEAVE THIS BYTE ON THE STACK. THE HIGH ORDER
8 BITS OF <RESULT> WILL ALWAYS BE ZERO.

(A)

A CONSTANT WHOSE VALUE SPECIFIES THE JUMP-CONDITION FOR THE "B
REGISTER = O™ TEST. USUALLY FOLLOWED BY IFs END» JIF, JIFM, OR
XIFs « REFER TO PAGE 20-18 OF THE VARIAN HANDBOOK, SEE NOT.

A VARIABLE CONTAINING THE CURRENT NUMBER CONVERSION BASE. THE
WORD DECIMAL SETS BASE TO 10, OCTAL SETS BASE TO 8, HEX SETS
BASE TO 16» ETC,

(CO+,P) BEGIN ces <SLOGICAL-VALUE> END
BEGIN e <LOGICAL-VALUE> WHILE v REPEAT

BEGIN MARKS THE START OF A SEQUENCE OF WORDS THAT ARE TO BE
EXECUTED REPEATEDLY UNTIL A SPECIFIED CONDITION IS TRUE. IF THE
BEGIN-END FORM IS USEDs ALL THE WORDS BETWEEN THE BEGIN AND THE
END ARE EXECUTED REPEATEDLY UNTIL THE <LOGICAL-VALUE> IS TRUE»
AT WHICH POINT THE WORDS FOLLOWING THE END ARE EXECUTED. IF THE
BEGIN-WHILE-REPEAT FORM IS USED THE WORDS BETWEEN THE BEGIN AND
THE REPEAT ARE EXECUTED REPEATEDLY AS LONG AS THE
SLOGICAL-VALUE> ENCOUNTERED BY WHILE IS TRUE. WHEN WHILE
ENCOUNTERS A FALSE <LOGICAL-VALUE> THE LOOP IS EXITED
IMMEDIATELY. THESE LOOPS MAY BE NESTED.

(a) BEGIN, vee <JUMP-CONDITION> END»

BEGINs MARKS THE START OF A SEQUENCE OF MACHINE INSTRUCTIONS
THAT ARE TO BE EXECUTED REPEATEDLY UNTIL THE SPECIFIED
<JUMP-CONDITION> IS TRUE. <JUMP-CONDITION> IS USUALLY SPECIFIED
BY ONE OF THE WORDS A+s A-s AO, BO OR OV. BEGIN,-ENDs LOOPS MAY
Bt NESTED,

ACTIVATE THE TERMINAL BELL OR NOISEMAKER, AS APPROPIATE FOR THE
TERMINAL DEVICE.

Feb. 1979

FORTH GLOSSARY IMESEN () *%+9~=,/012345678933<=>29A20\1"_

BINARY (A)

A CONSTANT WHOSE VALUE IS THE MEMORY ADDRESS OF THE INTERPRETER
ROUTINE IN FORTH TO POP TwO WORDS OFF THE STACK AND THEN PUSH
THE CONTENTS OF THE A REGISTER ONTO THF STACK. THE SEQUENCE
"BINARY 1-" LEAVES THE ADDRESS OF THE INTERPRETER ROUTINE TO
POP THREE WORDS OFF THE STACK AND THEN PUSH THE CONTENTS OF THE
A REGISTER ONTO THE STACK., THE NORMAL SEQUENCE IS EITHER
"BINARY JMP,"™ OR M"BINARY 1= JMP,n,

BINEX
A VARIABLE USED TO HOLD THE BINARY EXPONENT OF A FLOATING-POINT
NUMBER BY THE FLOATING—POINT ROUTINES.

BK
INITIATE THE BACKSPACING OF A SINGLE MAG TAPE RECORD AND RETURN
IMMEDIATELY. SEE BKSP,

BKSP
INITIATE THE BACKSPACING OF A SINGLE MAG TAPE RECORD AND WAIT
FOR THE OPERATION TO COMPLETE. SEE BK.

BL
A CONSTANT WHOSE VALUE IS 32 (40B), NAMELY AN ASCII SPACE.

BLANK (aLd)
RENAMED SPACE.,

BLK
A VARIABLE CONTAINING THE NUMBER OF THE BLOCK BEING LISTED OR
EDITED.,

BLGCK <BLOCK#> BLOCK <ADDRESS?>
FETCH THE SPECIFIED BLOCK FROM DISC OR TAPE AND LEAVE IT IN ONE
OF FORTH'S BLOCK BUFFERS., THE STARTING MEMORY ADDRESS OF THE
BLOCK IS THEN RETURNED ON THE STACK. IF THE SPECIFIED BLOCK IS
ALREADY IN MEMORY THEN IT NEED NOT BE READ IN FROM SECONDARY
STORAGE. SEE HBLOCK.

BLOCK-ASK

SETS A FLAG SO THAT THE NEXT USE OF ANY ASKING WORD (SASKs DASK
OR FASK) WILL FETCH CHARACTERS FROM THE BLOCK BUFFER RATHER
THAN THE TERMINAL. SEE TERMINAL-ASK.

BLOCK-WORD (OLD)
RENAMED BLOCK=-ASK.,.

BLOCKPRINT <START-BLOCK#> <END-BLOCK#> BLOCKPRINT
QUTPUT THE SPECIFIED SEQUENCE OF BLOCKS TD THE LINE PRINTER.

THE APPROPIATE LINE PRINTER CODE MUST HAVE PREVIOUSLY BEEN
LOADED (SEE UTIL AND PRINTERS),

Feb. 1979 D-23

BNOT

BOLDFACE

BOXGRID

BRACKET

BT»

BUFFER

BYTE

D-24

FORTH GLOSSARY IMHSEY () *+5,=4/0123456789:;5;<=>29AZL\]1"_

(aLd
RENAMED COM,

INCREASE THE SIZE OF THE CHARACTERS PRINTED BY THE LINE
PRINTER, THIS WORD IS DEVICE DEPENDENT.

<X-PHYSICAL-ORIGIN> <X-LOGICAL-ORIGIN> <X-LOGICAL-MAX>

<X=PHYSICAL-SIZE> <Y=-PHYSICAL-ORIGIN> <Y-LOGICAL-ORIGIN?>

<Y-LOGICAL-MAX> <Y-PHYSICAL-SIZE> BOXGRID
DEFINES A LOGICAL COORDINATE SYSTEM FOR THE 401C BASED ON THE
EIGHT FLOATING-POINT PARAMETERS. IN ADDITION, A BOX IS DRAWN TO
SURROUND THE PLOT AND THE AXES ARE LABELLED. THE
PHYSICAL-ORIGIN AND THE PHYSICAL-SIZE ARE GIVEN IN PHYSICAL
COORDINATES (0.0 THROUGH 1023.0 FOR X3 0.C THROUGH 780.0 FOR
Y). THE LOGICAL-ORIGIN AND THE LOGICAL-MAX ALLOWS THE USER TO
IMPLICITLY DEFINE A LOGICAL COORDINATE SYSTEM WHICH THEN MAPS
INTO THE SPECIFIED PHYSICAL COORDINATE SYSTEM. SEE LPLOT AND
PPLOT.

BRACKET <NAME>
SEARCHES THE DICTIONARY FOR <NAME> AND OUTPUTS THE DICTIONARY
ADDRESS AND THE THREE CHARACTER/COUNT IDENTIFIERS OF THE FAUR
WORDS THAT PRECEDE <NAME> IN THE DICTIONARY AND THE FOUR WORDS
THAT FOLLOW <NAME> IN THE DICTIONARY.

(A) <ADDRESS> <VALUE> BT,
THE ASSEMBLER MNEMONIC FOR THE VARIAN BT INSTRUCTION (BIT
TEST).

<BLOCK#> BUFFER <ADDRESS?>

OBTAIN A CORE BUFFER FOR THE SPECIFIED BLOCK AND LEAVE THE
STARTING ADDRESS OF THE BUFFER ON THE STACK. THE BLOCK IS NOT
READ FROM DISC AND IS AUTOMATICALLY MARKED AS UPDATED (I.E. -
THE CONTENTS OF THE CORE BUFFER WILL BE WRITTEN ONTO ©OISC OR
TAPE WHEN THE BUFFER SPACE IS NEEDED FOR ANOTHER BLOCK). USE
THIS WORD RATHER THAN BLOCK WHEN AN ENTIRE BLOCK IS GOING T3 3E
RE-WRITTEN, TO REDUCE DISC ACCESSES,

<ADDRESS> BYTE <BYTE-ADDRESS?>
CONVERT THE MEMORY <ADDRESS> TO A BYTE-ADDRESS AND LEAVE THE
BYTE-ADDRESS ON THE STACK. THIS CONVERSICN IS A LOGICAL ROTATE
OF THE MEMORY ADDRESS ONE BIT LEFT. NOTE THAT THIS WORD IS
EQUIVALENT TQ A MULTIPLICATION BY 2 ONLY IFf THE MULTIPLICAND IS
POSITIVE., IF THE MULTIPLICAND IS NEGATIVE THEN A LOGICAL ROTATE
LEFT IS NOT EQUIVALENT TO A MULTIPLICATION BY 2.

Feb. 1979

FORTH GLOSSARY PMASEV () k4, -,/0123456789:;<=>2AZ0\1"_

C.0ORG

CASE

CELL

CHAI

CHAR

Feb.

N

1979

A VARIABLE WHOSE VALUE SPECIFIES THE STARTING ADDRESS GF A
BUFFER CONTAINING THE DDUBLE-WORD DATA POINTS FOR AN FFTe. SEE
DFOURTRAN, DINVTRAN AND LENGTH.

(C2+,P) <SVALUEl> <VALUEZ> CASE e e THEN
<VALUE1> <VALUEZ2> CASE se s ELSE o T HEN
IF <VALUE1> EQUALS <VALUE2>, DROP BOTH <VALUE1l> AND <VALUE2>
AND EXECUTE THE WORDS DIRECTLY FOLLOWING CASE, UP TO THE NEXT
ELSE OR THEN. IF <VALUE1> DOES NOT EQUAL <VALUE2> THEN <VALUE2>
IS DROPPED BUT <VALUE1l> IS LEFT ON THE STACK AND THE WORDS
FOLLOWING THE ELSE (OR THE THEN, IF NO ELSE IS PRESENT) ARE
EXECUTED. NOTE THAT EVERY CASE MUST HAVE A TERMINATING THEN .
CASE IS EQUIVALENT TO THE SEQUENCE "OVER = IF DROP", CASE IS
USED TO COMPARE <VALUE1> AGAINST A LIST OF POSSIBLE VALUESs FOR
EXAMPLE?
SVALUEL1> <VALUE2> CASE (ACTION FOR <VALUEZ2>) ELSE
<SVALUE3> CASE (ACTION FOR <VALUE3>) ELSE
<VALUE&4> CASE (ACTION FOR <VALUE4>) ELSE
ELSE (NDT EQUAL TO ANY 0OF THE ABOVE)
THEN THEN THEN THEN

<BYTE-ADDRESS> CELL <ADDRESS?>
CONVERT THE <BYTE-ADDRESS> TO ITS MEMORY ADDRESS, LEAVING THE
MEMORY ADDRESS CN THE STACK. THIS CONVERSION IS A LOGICAL SHIFT
OF THE BYTE~-ADDRESS ONE BIT RIGHT. NOTE THAT THIS WORD IS
EQUIVALENT TO A DIVISICN BRY 2 ONLY IF THE DIVIDEND IS POSITIV:E.
IF THE DIVIDEND IS NEGATIVE THEN A LOGICAL SHIFT RIGHT IS NOT
EQUIVALENT TO A DIVISION BY 2.

CHAIN <NAME?>
CONNECT THE CURRENT VOCABULARY TO ALL DEFINITIONS THAT MIGHT BE
ENTERED INTO VOCABULARY <NAME> IN THE FUTURE. THE CURRENT
VOCABULARY MAY NOT BE FORTH OR ASSEMBLER. ANY GIVEN VOCABULARY
MAY ONLY BE CHAINED ONCE BUT MAY BE THE OBJECT OF ANY NUMBER OF
CHAININGS. FOR EXAMPLE, EVERY USER-DEFINED VOCABULARY MAY
INCLUDE THE SEQUENCE "CHAIN FORTH",

SMAX#CHARACTERS> CHAR <NAME>
DEFINE A CHARACTER STRING., ENOUGH ROOM IS ALLOCATED FOR
<MAXH#CHARACTERS> AND THE DICTIONARY ENTRY IS IDENTIFIED B8Y
<SNAME?>, <MAX#CHARACTERS> IS SAVED IN THE DICTIONARY ENTRY FOR
<SNAME> 50 THAT ONE CAN ALWAYS DETERMINE THE MAXIMUM NUMBER OF
CHARACTERS THE STRING MAY HOLD, REGARDLESS OF THE NUMBER OF
CHARACTERS CURRENTLY CONTAINED IN THE STRING. SUBSEQUENT
EXECUTION OF <NAME> WILL PUSH ONTO THE STACK THE ADDRESS OF THE
FIRST TWO BYTES OF THE CHARACTER STRING (THE COUNT BYTE AND THE

FIRST CHARACTER), AS REQUIRED» FOR EXAMPLEs» BY COUNT. SEE
CMOVE.

D-25

CHCURSOR

CHFETCH

CIA,

CIiB,

CMOVE

CaDE

COM

COMP,

CONSTANT

CONTEXT

D-26

FORTH GLOSSARY IVESEY () %45—-,701234567892;<2>23AZ[\)"_

CHCURSOR <Y-POSN> <X-POSN>
TURNS ON THE 4010 CROSS HAIR CURSORS AND WAITS FOR THE OPERATOR
TQO ENTER ANY CHARACTER. TwWO SINGLE-WORD INTEGERS ARE RETURNED,
THE X AND Y POSITIONS OF THE CURSORS.

CHFETCH <CHAR-CODE?>
RETURNS THE CHARACTER WHICH IS STORED IN THE BYTE POINTED TO BY
THE BYTE-ADDRESS IN IP. IP IS ALSO INCREMENTED.,

(aA) <DEVICE-CODE> CIA,
THE ASSEMBLER MNEMONIC FOR THE VARIAN CIA INSTRUCTION (CLEAR
AND INPUT TO THE A REGISTER).

(A) <DEVICE-CODE> CIB,

THE ASSEMBLER MNEMONIC FOR THE VARIAN CIB INSTRUCTION (CLEAR
AND INPUT TO THE B REGISTER).,

<SOURCE~ADDRESS> <DESTINATION-ADDRESS> CMOVE

MOVE A CHARACTER STRING FROM THE SPECIFIED SOURCE ADDRESS TO
THE SPECIFIED DESTINATION ADDRESS. . THE DESTINATION ADDRESS IS
ASSUMED TO POINT TO THE DICTIONARY ENTRY FOR A WORD DEFINED AS
A FORTH CHARACTER STRING (SEE CHAR). THE DICTIONARY ENTRY FOR
THE DESTINATION FIELD WILL THEN SPECIFY THE MAXIMUM NUMBER OF
CHARACTERS THAT THE STRING MAY HOLD AND ANY EXCESS CHARACTERS
IN THE SOURCE FIELD WILL NOT BE MOVED. BOTH <SOURCE-ADDRESS?>
AND <DESTINATION-ADDRESS> MUST POINT TO THE FIRST TWO BYTES OF
THEIR RESPECTIVE CHARACTER STRINGS (THE COUNT BYTE AND THE
FIRST CHARACTER),

CODE <NAME>
CREATE A DICTIONARY ENTRY DEFINING <NAME> AS EQUIVALENT TO THE
SEQUENCE OF ASSEMBLER CODE THAT FOLLOWS <NAME>, THE CONTEXT
VOCABULARY IS SET TO ASSEMBLER. IT IS VERY IMPORTANT TO
REMEMBER THAT FORTH'S COMPILATION FLAG IS NOT SET WHILF
ASSEMBLING MACHINE CODE INSTRUCTIONS, THAT 1S, FORTH REMAINS IN
EXECUTION MODE.

<VALUE> COM <RESULT>
FORM THE ONES-COMPLEMENT OF <VALUE> AND LEAVE IT ON THE STACK.

(A)
THE ASSEMBLER MNEMONIC FOR THE VARIAN COMP INSTRUCTION
(COMPLEMENT AND COMBINE REGISTERS).,

SVALUE> CONSTANT <NAME>
DEFINE A WORD <NAME> WHICH WHEN EXECUTED WILL PUSH ITS
SINGLE~-WORD VALUE ONTO THE STACK., THE VALUE 0OF <NAME> IS
INITIALIZED TO <VALUE>. THE <VALUE> OF THE CONSTANT MAY BE
CHANGED BY THE SEQUENCE "<NEW=VALUE> ' <NAME> 1w,

A VARIABLE CONTAINING A POINTER TO THE VOCABULARY IN WHICH
DICTIONARY SEARCHES ARE TO BEGIN. SEE CURRENT.

Feb. 1979

FORTH GLOSSARY INHSEY () *4y~,/01234567893;<=>20AZI\1"_

CONTINUED (E) <BLOCK#> CONTINUED
CONTINUE INTERPRETATION WITH THE SPECIFIED BLOCK., THE SEQUENCE
"1 +B8LOCK CONTINUED" CONTINUES INTERPRETATION WITH THE NEXT
BLOCK.,

COUNT <ADDRESS> COUNT <COUNT>

<ADDRESS> POINTS TO THE FIRST TWD BYTES OF A FORTH CHARACTER
STRING AND COUNT WILL RETURN THE NUMBER OF CHARACTERS IN THE
STRING ON TOP OF THE STACK AND THE BYTE-ADDRESS OF THE STRING
WILL BE STORED IN IP. IT IS ASSUMED THAT THE FIRST BYTE OF THE
STRING IS THE CHARACTER COUNT AND THE ACTUAL STRING STARTS WITH
THE SECOND BYTE. THIS WORD IS USUALLY FOLLOWED BY EITHER WRITE
OR TYPE.,

CPA, (A)

THE ASSEMBLER MNEMONIC FOR THE VARTAN CPA INSTRUCTION
(COMPLEMENT THE A REGISTER).

CpPU (A) SVALUE> CPU <NAME>
DEFINE <NAME> AS A SINGLE-WORD MACHINE INSTRUCTION WHOSE
MACHINE CODE REPRESENTATION IS <VALUE>. WHEN <NAME> IS EXECUTED
IT WILL REQUIRE NO PARAMETERS ON THE STACK AND <VALUE> wILL BE
STORED IN THE NEXT AVAILABLE DICTIONARY LGCATIONs SEE DLs» IO

AND M/CPU,

CR
OUTPUTS A CARRIAGE-RETURNs LINE-FEED TO THE CURRENT QUTPUT
DEVICE (USUALLY THE OPERATOR'S TERMINAL).

CRATE
A VARIABLE USED BY THE CAMAC WORDS TO CONTAIN THE CRATE NUMBER
FOR CAMAC DEFINITIONS WHICH ARE REING COMPILED INTO THE
DICTIONARY., THE DEFAULT VALUE OF THIS VARIABLE IS 1.

CUK (1)
A VARIABLE CONTAINING THE PHYSICAL RECORD NUMBER BEFORE WHICH
THE MAG TAPE IS CURRENTLY POSITIONED. REWIND SETS CUR TO ZERQD.

CURRENT
A VARIABLE CONTAINING A PDINTER TO THE VOCABULARY INTD WHICH
NEW WORDS ARE TO BE ENTERED. THE SEQUENCE "CURRENT @ 2" LEAVES
THE LINK ADDRESS OF THE NEXT ENTRY TO BE DEFINED.

CURSE CURSE <CHAR-CODE> <Y-POSN> <X-POSN>

TURNS ON THE 4010 CROSS HAIR CURSORS AND WAITS FOR THE OPERATOR
TO ENTER ANY CHARACTER. THE CURSOR POSITION IS SAVED IN /CURSE.,
<X=-POSN> AND <Y-POSN> ARE FLOATING-POINT VALUES SPECIFYING THE
PHYSICAL POSITION OF THE CURSDR CROSS HAIR AND <CHAR-CODE> IS
THE ASCII CHARACTER CODE FOR THE CHARACTER THAT THE OPERATOR
ENTERED. THE TERMINAL IS PUT BACK INTO ALPHA MODE WITH THE
CURSOR AT THE SAVED POSITION.

Feb. 1979 D-27

D*

D*/

D+

b/

D-28

FORTH GLOSSARY INESEY () ¥4+9-,/01236456789:5<3>29A7LN\1"_

(aLD)

A VARIABLE SPECIFYING EITHER THE NUMBER OF DIGITS TO THE RIGHT
OF THE RADIX POINT IN THE LAST NUMBER INPUT (A NEGATIVE VALUE
IF THERE WAS NO RADIX POINT ENTERED) OR THE NUMBER OF DIGITS TO
FOLLOW THE RADIX POINT IN THE NEXT NUMBER TO BE QUTPUT.
REPLACED AY #D FOR INPUT AND DPL FOR OQUTPUT.

<DW-VALUE> <ADDRESS> D!
STORE <OW-VALUE> STARTING AT THE SPECIFIED MEMORY ADDRESS.

<DW-FRACTION1> <DW-FRACTION2> D% <DW—-FRACTION-RESULT>
MULTIPLY THE TWO DOUBLE-WORD FRACTICONS LEAVING THE RESULT, A
DOUBLE-WORD FRACTION ON THE STACK. NOTE THAT THE MULTIPLICATION
OF TWO FRACTIONS WILL ALWAYS GENERATE A FRACTICNAL RESULT. NOTE
THAT THIS WORD DOES NOT MULTIPLY DOUBLE-WORD INTEGERS BUT
MULTIPLIES DOUBLE-WORD FRACTIONS.

<DW=-VALUE> <VALUELl> <VALUE2> D%/ <DW-RESULT>
MULTIPLY <DW-VALUE> BY <VALUE1> AND THEN DIVIDE THE RESULT B8Y
<VALUE2>, LEAVING THE RESULTs, A DOUBLE-WORD INTEGER, ON THE
STACK.

<DW=-VALUELl> <DW-VALUE2> D+ <DW-RESULT>
DOUBLE-WORD INTEGER ADDITION, LEAVING THE RESULT ON THE STACK.,

<DW=VALUE1> <DW-VALUE2> D- <DW=-RESULT>
POUBLE-WAORD INTEGER SUBTRACTIONS LEAVING THE RESULT,
<DW=VALUE1> - <DW-VALUE2>, ON THE STACK.

(1)
LOADS THE DISC HANDLERS. SEE UTIL.

<DW-VALUE> D.
DOUBLE~WORD INTEGER QUTPUT. OUTPUT <DW~VALUE> TO THE CURRENT
QUTPUT DEVICE (USUALLY THE DOPERATOR'S TERMINAL). THE FIELD
WIDTH IS SPECIFIED BY FLD AND THE NUMBER OF PLACES TO THE RIGHT
OF THE RADTIX POINT ARE SPECIFIED BY DPL.

<DW-FRACTICON1> <DW-FRACTION2> D/ <DW—FRACTION-RESULT>
DOUBLE-WORD FRACTICNAL DIVIDE, LEAVING THE RESULT,
<DW-FRACTION1> / <DW-FRACTION2>s ON THE STACK. NOTE THAT THIS
WIRD DOES NOT DIVIDE DOUBLE=-WORD INTEGERS BUT DIVIDES
DOUBLE~WORD FRACTIONS,

Feb. 1979

FORTH GLOSSARY !"#$8'()*+;-./0123456789:;<=>?8AZ(\]“_

bo

DO»

Do«
DO=

D1

Ol

D2T

D«
=
D>

Da

DABS

DAR,

DASK

Feb.

1979

(0LD)
RENAMED DOy,

A 2CONSTANT WHOSE VALUE IS THE DOUBLE-WORD INTEGER Q.

<DW-VALUE> DO< <LOGICAL-VALUE>

<DW-VALUE> DO= <LOGICAL-VALUE>
COMPARE <DW-VALUE> AGAINST ZERO AND LEAVE A <LOGICAL-VALUE> QOF
TRUE ON THE STACK IF THE INDICATED RELATION IS TRUE, OTHERWISE
LEAVE A <LOGICAL~VALUE> OF FALSE ON THE STACK.

(oLD)
RENAMED D1,.

A 2CONSTANT WHOSE VALUE IS THE DOUBLE-WORD FRACTION 1. THIS
VALUE IS NOT THE DOUBLE-WORD INTEGER 1.

<SBLOCK#> D27
TRANSFER THE SPECIFIED BLOCK FROM DISK TO TAPE., SEE D—H AND
T"'Hc

<DW-VALUE1l> <DW-VALUE2> D< <LOGICAL-VALUE>
<DW-VALUE1> <DW-VALUE2> D= <LOGICAL-VALUE>
<DW-VALUEL1> <DW-VALUE2> D> <LOGICAL-VALUE>
COMPARE <DW-VALUE1> AND <DW~VALUE2> AND LEAVE A <LOGICAL=VALUE>
OF TRUE ON THE STACK IF THE INDICATED RELATION IS TRUE»
OTHERWISE LEAVE A <LOGICAL-VALUE> OF FALSE ON THE STACK .

<ADDRESS> D@ <DW-VALUE>
FETCH THE DOUBLE-WORD VALUE STARTING AT MEMORY LOCATION
<ADDRESS> AND PUSH IT ONTO THE STACK.

<DW-VALUE> DABS <DW-RESULT>
FORM THE ABSOLUTE VALUE OF <DW-VALUE> AND LEAVE IT ON THE

(A)
THE ASSEMBLER MNEMONIC FOR THE VARIAN DAR INSTRUCTION
(DECREMENT THE A REGISTER).

DASK <Dw-VALUE>
REQUEST THE INPUT OF A DOUBLE-WORD VALUE FROM THE TERMINAL .

D-29

FORTH GLOSSARY INHSETN () %+,=4/012364567898;<=>29AZ[\]1"_

DBR» (A)

THE ASSEMBLER MNEMONIC FOR THE VARIAN DBR INSTRUCTION
(DECREMENT THE B REGISTER).,

DCONSTANT (OLD)
RENAMED 2CONSTANT,

DECIMAL
SETS THE NUMERIC CONVERSION BASE TO DECIMAL MODE, THAT IS, SET
THE VARIABLE BASE TC 10. SEE OCTAL AND HEX.

DECR» (A) <VALUE> DECR»
THE ASSEMBLER MNEMONIC FOR THE VARIAN DECR INSTRUCTION
(DECREMENT AND COMBINE REGISTERS).

DEFINITIONS SNAME> DEFINITIONS

SET THE CURRENT VOCABULARY (INTO WHICH NEW DEFINITIONS ARE
BEING ENTERED) TO THE VOCABULARY <NAME>. <NAME> NEED NOT BE
SPECIFIED EXPLICITLYs IN WHICH CASE <NAME> IS ASSUMED TO BE THE
CONTEXT VOCABULARY.

DELIMITER (OLD)
A VARTABLE SPECIFYING THE CHARACTER THAT TERMINATES A WORD.

DFIX <FP-VALUE> DFIX <DW-RESULT?>
TRUNCATE THE FLOATING=-POINT VALUE TO A DOUBLE-WORD INTEGER
VALUE. IF ONE WANTS TO ROUND THE FLOATING-POINT VALUE PRIOR TO
TRUNCATION, THE FLOATING-POINT VALUE C.5 SHOULD BE ADDED TO
<FP-VALUE> PRIOR TO EXECUTING DFIX. SEE SFIX.

DFLOAT <DW-VALUE> DFLOAT <FP-RESULT?>
CONVERT THE DOUBLE-WORD INTEGER TO A FLOATING-POINT VALUE.

DFOURTRAN

PERFORM A RADIX 2 FAST FOURIER TRANSFORM USING THE COOLEY-TUKEY
ALGORITHM, THE STARTING BUFFER ADDRESS OF THE INPUT DATA MUST
BE STORED 1IN THE VARIABLE C.ORG AND THE NUMBER OF DATA POINTS
(A POWER OF 2) MUST HAVE BEEN SPECIFIED BY EXECUTING THE WORD
LENGTH. THE INPUT ©DATA IS A VECTOR OF REALs, DOUBLE-WORD
INTEGERS AND THE RESULT (WHICH DVERWRITES THE INPUT DATA) IS A
VECTOR OF COMPLEX, DOUBLE~WORD INTEGERS. SINCE THE FOURIER
TRANSFORM OF N REAL PODINTS IS HERMITIAN (REAL PART EVEN AND
IMAGINARY PART 0ODD) ONLY (N/2)+1 COMPLEX PQOINTS ARE RETURNED.
THE TMAGINARY PART OF THE FIRST AND LAST DATA POINT WILL ALWAYS
BE ZERO SINCE THE IMAGINARY PART IS AN ODD FUNCTION, THE BUFFER
FOR AN N-POINT FFT MUST Bt OF LENGTH (N*2)+4 WORDS (THE
ADDITIONAL 4 WORDS ARE REQUIRED FOR THE LAST OF THE (N/2)+1
COMPLEX PDINTS RETURNED). SEE DINVTRAN,

D-30 Feb. 1979

FORTH GLOSSARY INESEY () *+,-./01234567893;3<=>2AZ(\1"_

DHALF

A 2CONSTANT WHOSE VALUE IS 0.5 WHEN CONSIDERED AS A DOUBL E-WORD
FRACTION,

DHSIN <DW-FRACTION> DHSIN <DW-FRACTION=-RESULT?
REPLACE THE <DW-FRACTION>, GIVEN IN HALF CIRCLES, WITH IVS SINE
(IN RADIANS) ALSO A DOUBLE-WORD FRACTICGN., THIS WORD IS THE
BUILDING BLOCK FOR THE FLOATING-POINT TRIGONOMETRIC FUNCTIONS.

DIGILIGHTS SVALUE> <START#> <END#> DIGILIGHTS

WRITE <VALUE> TO THE SPECIFIED DIGILIGHTS ON THE CAMAC DI SPLAY
PANEL,

DIGISWITCHES SSTART#> <END#> DIGISWITCHES <RESULT>
READS IN A GROUP OF DIGISWITCHES FROM THE CAMAC DISPLAY P ANEL.
SSTART#> AND <END#> SPECIFY THE STARTING AND ENDING DIGISWITCH
NUMBERS AND IF 4 OR FEWER DIGISWITCHES ARE SPECIFIED THE
SRESULT> WILL BE A SINGLE-WORD INTEGER WHILE IF 5 OR MORE
DIGISWITCHES ARE SPECIFIEDs <RESULT> WILL BE A DOUBLE-WORD
INTEGER,

CINVTRAN

PERFORM A RADIX 2 INVERSE FAST FOURIER TRANSFORM USING THE
COOLEY-TUKEY ALGORITHM. THIS OPERATION IS THE INVERSE OF THE
FFT PERFORMED BY DFOURTRANs THAT IS, THE INPUT VECTOR CONTAINS
(N/2)+1 COMPLEX, DOURLE-WORD INTEGERS AND THE RESULT IS N REAL,
DOUBLE-WORD INTEGERS.,

DISCARD
A NULL DEFINITION INTENDED FOR USE AS A STANDARD REMEMBER WORD.

THIS NULL DEFINITION GUARANTEES THAT THE WORD DISCARD WILL
ALWAYS BE FOUND. SEE FORGET AND REMEMBER.,

DISK (1)
SETS THE DISC AS THE PRIMARY MASS STORAGE DEVICE. SEE D=-He

DISK~TO-TAPE <START-BLOCK#> <END-BLOCK#> DISK=TO-TAPE

TRANSFERS ALL NON-ZERO BLOCKS IN THE SPECIFIED RANGE FROM DISK
TO TAPE. SEE D-H.

DISKC

ZERD BLOCKS 1 THROUGH 511 ON THE DISC. EQUIVALENT TO THE
SEQUENCE "1 511 ZERODISK"™. SEE UTIL.

Feb. 1979 D-31

DIV,

DL

DLIST

DMINUS

DO

DOUBLE

op

Dp*

DP+

DP+!

D-32

FORTH GLOSSARY INESEN () x4y —4/012345678G91;5<=>20AZ(\1"_

(A) <ADDRESS> DIV,
THE ASSEMBLER MNEMOMIC FOR THE VARIAN DIV INSTRUCTION (DIVIDE
THE A AND B REGISTERS BY MEMORY).,

(A) <SVALUE> DL <NAME>

DEFINE <NAME> AS A DOUBLE-WORD MACHINE INSTRUCTION WHOSE BASIC
MACHINE CODE REPRESENTATION IS <VALUE>. WHEN <NAME> IS EXECUTED
THE TOP NUMBER ON THE STACK IS INCLUSIVELY OR-ED WITH BOTH
<VALUE> AND THE CURRENT VALUE OF MODE. THIS 16-BIT VALUE IS
STORED IN THE NEXT AVAILABLE DICTIONARY LOCATION AS THE FIRST
WORD OF THE INSTRUCTION. THE SECOND NUMBER ON THE STACK IS THEN
STORED IN THE NEXT AVAILABLE DICTIONARY LOCATION AS THE SECOND
WORD OF THE INSTRUCTION. SEE CPU, I/0 AND M/CPU,

() <ADDRESS> DLIST

LIST ALL WORDS IN THE DICTIONARY, STARTING WITH THE DICTIONARY
ENTRY POINTED TD BY <ADDRESS>. WHEN ONE WISHES TO LIST ALL
ENTRIES BEFORE A SPECIFIC ENTRY» THE USUAL SEQUENCE IS !
<NAME> DLIST™,

<DW-VALUE> DMINUS <DW-RESULT>
NEGATE <DW-VALUE> BY FORMING ITS TWOS-COMPLEMENT.

(C) CENDING~INCREMENT> <STARTING-INCREMENT> DO ‘e
BEGIN A DO LOOP WHICH MUST THEN BE TERMINATED BY EITHER LOOP OR
+L00P. THE LODP INDEX BEGINS AT <STARTING-INCREMENT> AND IS
THEN EITHER INCREMENTED OR DECREMENTED EACH TIME THROUGH THE
LOOP BY THE WORDS LOOP OR +L0GCP.

(3LD)
RENAMED 2VARIABLE,

A VARIABLE WHOSE VALUE IS THE ADDRESS OF THE NEXT AVAILABLE
WORD IN THE DICTIONARY. SEE HERE AND DP+!,

THE ADDRESS OF A SUBROUTINE TO PERFORM DOUBLE~WORD FRACTIONAL
MULTIPLICATION. THIS SUBROUTINE IS CALLED BY THE SEQUENCE "DPx
6 JSR,™,

DP+
THE ADDRESS NF A SUBRODUTINE TO PERFORM DOUBLE-WORD INTEGER

ADDITION, THIS SUBROUTINE IS CALLED BY THE SEQUENCE "DP+ 6
JSR,".

<VALUE> DP+! \ '
ADD THE SIGNED <VALUE> TO THE DICTIONARY POINTER, DP. SINCE THE
DICTIONARY POINTER MAY BE AN INTERNAL REGISTER RATHER THAN A

VARIABLE, IT SHOULD ONLY BE ACCESSED THROUGH THE WORDS HERE AND
DP+1t,

Feb. 1979

FORTH GLOSSARY PMHSEN () k+y=a/0123456789:;<=>20AZ0\1"_

DPL

DPLT

DPOLYVAL

DPREC

DROP

DUMP

DumMp

Dup

DXR»

Feb. 1979

A VARTIABLE WHICH ONE SETS TO THE NUMBER OF DIGITS THAT THEY
WISH TO FOLLOW THE RADIX POINT IN A NUMBER TO BE OUTPUT. IF DPL
IS SET TO A NEGATIVE VALUE, THE RADIX POINT WILL NOT BE
PRINTED. SEE FLD AND W.D.

<X-POSN> <Y-POSN> DPLT
DRAWS A VECTOR ON THE 4010 FROM THE CURRENT POSITION TO THE
SPECIFIED OFFSET FROM THE CURRENT POSITION AS GIVEN BY <X-POSN>
AND <Y-POSN>. THE PARAMETERS TO THIS WORD ARE OFFSETS FROM THE
CURRENT POSITION AND NOT PHYSICAL COORDINATES. <X-POSN> AND

<Y-POSN> ARE SINGLE-WORD INTEGERS IN THE RANGE 0-1023 AND
0"7800

<#TERMS> DPOLYVAL <NAME>

DEFINE <NAME> AS A WORD WHICH WHEN EXECUTEDs WILL EVALUATE A
POLYNOMIAL EXPRESSION. THE POLYNOMIAL MUST BE OF THE FORM Y =
AO + X({Al + X(A2 + ...)) AND IS EVALUATED ACCORDING TO HORNER'S
RULE (FROM THE INNERMOST LEVEL ODUTWARDS)., FOLLOWING <NAME> THE
COEFFICIENTS AOs Aly A2s 4so MUST APPEAR AS DOUBLE-WORD
FRACTIONS (THE WORD FD» IS HANDY FOR THIS) IN REVERSE ORDER
(THAT IS, THE LAST TERM FIRST AND A0 LAST). SINCE THE HIGHER
COEFFICIENTS ARE ALMOST ALWAYS THE SMALLEST IN VALUE, THE
SMALLER TERMS ARE ADDED FIRST IN ORDER TO MINIMIZE TRUNCATION
ERRORS.

(OLD)
SETS AN INTERNAL FLAG TO INDICATE THAT NUMBERS CONTAINING A

PERIOD ARE TO BE INTERPRETED AS DOUBLE~-WORD INTEGERS, NOT AS
FLOATING-POINT NUMBERS., SEE FLOATING.

<VALUE> DROP
DROP THE TOP <VALUE> FROM THE STACK.,

SSTARTING-ADDRESS> <#CELLS> DUMP
DUMP THE CONTENTS OF <#CELLS> OF MEMORY, STARTING WITH
<STARTING-ADDRESS> ONTO THE CURRENT QUTPUT DEVICE (USUALLY THE
QPERATOR'S TERMINAL). BOTH THE ADDRESS AND THE CONTENTS OF EACH
WORD ARE PRINTED USING THE CURRENT MUMBER BASE.

(OLD) <STARTING-ADDRESS> DUMP
DUMP THE CONTENTS OF MEMORYs STARTING WITH <STARTING-ADDRESS>,
ONTO THE CURRENT QUTPUT DEVICE (USUALLY THE OPERATOR'S

TERMINAL). THE COUTPUT IS TERMINATED BY PRESSING ANY TERMINAL
KEY.

<VALUE> DUP <VALUE> <VALUE>
DUPLICATE THE TOP <VALUE> ON THE STACK,

(a)

THE ASSEMBLER MNEMONIC FOR THE VARIAN DXR INSTRUCTION
(DECREMENT THE X REGISTER). NOTE THAT THE X REGISTER IS THE
STACK POINTER IN VARIAN FORTH, THEREFORE THIS INSTRUCTION
ALLOCATES ONE MORE WORD OF THE STACK.

D-33

E)

E?

EDIT

EDITOR

EJECT

ELSE

ELSE>S

D-34

FORTH GLOSSARY IMBSEN ()*+5=4/0123456789:5;<=>2AZ [\ 1" _

(OLD) <FP-NUMBER> E <VALUE> <FP=-RESULT>
THE GIVEN <FP-NUMBER> IS SCALED BY 10 ** <VALUE>,

(A)

SETS THE VARIABLE MODE TO 6, SPECIFYING INDEXING OFF THE 8
REGISTER FOR THE NEXT MEMORY REFERENCE INSTRUCTION. SINCE THE
ADDRESS OF THE DICTIONARY ENTRY BEING EXECUTED IS CONTAINED IN
THE B REGISTER THIS MNEMONIC IS MEANT TO INDICATE INDEXING OFF
THE CURRENT DICTIONARY ENTRY.

<FP-VALUE> E.
QUTPUT THE FLOATING-POINT VALUE IN E-FORMAT, THAT IS, AS A
FRACTION RAISED TO A POWER OF 10» TO THE CURRENT OQUTPUT DEVICE
(USUALLY THE OPERATOR'S TERMINAL)., THE OUTPUT FORMAT IS

SPECIFIED BY THE WORD WeDe THE FIELD WIDTH MUST INCLUDE THE 5
SPACES REQUIRED BY THE EXPONENT, ‘

<ADDRESS> E?
EQUIVALENT TO THE SEQUENCE "F2 E.".

<BLOCK#> EDIT
EDIT THE SPECIFIED BLOCK. IF THE EDITOR IS NOT ALREADY LDADED
INTO THE DICTIONARY IT WILL BE LOADED. THE BLOCK BEING EDITED
IS FIRST LISTED. ’

(P)

EDITOR IS THE NAME OF THE EDITOR VOCABULARY SO THAT IF THE
EDITOR VOCABULARY HAS BEEN LOADED INTO THE DICTIONARY ONE MAY
USE THE WORD EDITOR TO RE-INVOKE THE EDITOR VOCABULARY
(FOLLOWING THE SWITCH TO SOME OTHER VOCABULARY),.

HAVE THE LINE PRINTER PAGE EJECT TO THE TOP OF THE NEXT PAGFE,

(C25P)
THE WORD ELSE IS USED IN AN IF-THEN CLAUSE TO SPECIFY WHERE THE

IF BRANCH IS TO GO ON A FALSE <LOGICAL-VALUE>, THE ELSE CLAUSE
IS OPTIONAL AND MAY BE OMITTED.

{(A)
THIS WORD IS USED IN AN IFs-THEN, CLAUSE TO SPECIFY WHERE TO GO

ON A FALSE <JUMP-CONDITION>. THE ELSEs CLAUSE IS OPTIONAL AND
MAY BE OMITTED.

Feb. 1979

FORTH GLOSSARY IMHEEN () %4y~ /01234567892 ;<2>2AZL\1"_

END (C2-,P) <LOGICAL-VALUE> END
THIS WORD MARKS THE END OF A BEGIN-END LOOP. IF THE
<LOGICAL-VALUE> IS TRUE THE LOOP IS TERMINATED, OTHERWISE
CONTROL RETURNS TO THE FIRST WORD FOLLOWING THE CORRESPONDING
BEGIN.

END» {a) SJUMP-CONDITION> END»
THIS WORD MARKS THE END OF A BEGIN,-END, LOOP. IF THE SPECIFIED
<JUMP-CONDITION> IS TRUE THE LOOP IS TERMINATED, OTHERWISE A
JUMP IS MADE BACK TO THE FIRST INSTRUCTION FOLLOWING THE
BEGINs .

ENDFILE
WRITE AN END-OF-FILE ON THE MAG TAPE AND WAIT FOR THE OPERATION
TO COMPLETE. SEE WF. '

ERAs (A) <ADDRESS> ERA,
THE ASSEMBLER MNEMONIC FOR THE VARIAN ERA INSTRUCTION
(EXCLUSIVE-OR MEMORY WITH THE A REGISTER).,

ERASE~CORE
MARK ALL BLOCK BUFFERS AS EMPTY, UPDATED BLOCKS ARE NOT
FLUSHED. THE CONTENTS OF THE BUFFERS ARE SUBSEQUENTLY
UNDEFINED.,

EXC» {(A) SFUNCTION-DEVICE> EXC»
THE ASSEMBLER MNEMONIC FOR THE VARIAN EXC INSTRUCTIUN (EXTERNAL
CONTROL TO A DEVICE),

EXECUTE <ADDRESS> EXECUTE
EXECUTE THE WORD SPECIFIED BY <ADORESS>. <ADDRESS> MUST BE THE
COMPILATION ADDRESS OF A DICTIONARY ENTRYs, AS RETURNED BY THE
WORD FIND. THE NORMAL SEQUENCE IS THEN M"FIND <NAME> EXECUTE".

EXIT (c)
SKIP ONE LEVEL BACKs TO WHOEVER EXECUTED THE WORD IN WHICH EXIT
EXISTS. THIS WORD PROVIDES A METHOD OF EXITING A WORD WITHOUT
GOING ALL THE WAY THROUGH THE WORD TQ THE SEMI-COLON,

EXIT (oLD)
RENAMED LEAVE.

Feb. 1979 D-35

F*

F+

F+!

F/

Fr620

FO

FC.

FO<
FOs=

D-36

FORTH GLOSSARY IMESET () *4,-4/0123456789:35<=2>29A20\1"_

(OLD)
RENAMED FLD.

<FP-VALUE> <ADDRESS> F!
STORE <FP-VALUE> STARTING AT MEMORY LOUCATINN <ADDRESS>.

<FP-VALUE1> <FP-VALUE2> F* <FP-RESULT>
FLOATING-POINT MULTIPLICATION, LEAVING THE RESULT ON THE STACK.

<SFP-VALUE1> <FP-VALUE2> F+ <FP—-RESULT>
FLOATING-POINT ADDITION, LEAVING THE RESULT ON THE STACK.

<FP-VALUE> <ADDRESS> F+!
ADD <FP-VALUE> TO THE FLOATING-POINT VALUE STARTING AT MEMORY
LOCATION <ADDRESS>. <FP-VALUE> MAY BE A POSITIVE OR A NEGATIVE
VALUE., EQUIVALENT TO THE SEQUENCE "<ADDRESS> FQ@ <FP-VALUE> F+
<ADDRESS> Ftw,

SFP-VALUE1> <FP-VALUE2> F- <FP-RESULT?>
FLOATING-POINT SUBTRACTION, LEAVING THE RESULT, <FP-VALUE1> =~
<FP-VALUE2>, ON THE STACK.

<FP-VALUE> F,
FLOATING-POINT OUTPUT. ODUTPUT THE FLOATING-POINT VALUE TO THE
CURRENT OUTPUT DEVICE (USUALLY THE OPERATOR'S TERMINAL). THE
QUTPUT FORMAT MAY BE SPECIFIED BY THE WORD W.D.

<FP-VALUE1> <FP-VALUE2> F/ <FP-RESULT>
FLOATING-POINT DIVIDE, LEAVING THE RESULT, <FP-VALUE1l /
<FP-VALUE2>, ON THE STACK.

A CONSTANT DENQTING EITHER THE CPU TYPE OR THE INSTALLATION:
-1 SOLAR 62C/F WITH TELETYPE AND TEKTRONIX 611
0 620/L

620/F

V74

N s
L

(OLD)
RENAMED FOs.

AN FCONSTANT WHOSE VALUE IS THE FLOATING-POINT NUMBER 0.0.

<FP-VALUE> FO< <LOGICAL-VALUE>

<FP-VALUE> FO= <LOGICAL-VALUE>
COMPARE <FP-VALUE> AGAINST 0.0 AND LEAVE A <LOGICAL-VALUE> OF
TRUE IF THE INDICATED RELATION IS TRUE, OTHERWISE LEAVE A
<SLOGICAL-VALUE> OF FALSE ON THE STACK.

Feb. 1979

FORTH GLOSSARY IM#SEY () %+5-4 /01234567891 ;3;<2>29A2(\]"_

Flo0 (3LD)
RENAMED F10..
F10.
AN FCONSTANT WHOSE VALUE IS THE FLOUATING=-POINT NUMBER 10.0.
F180.,
AN FCONSTANT WHOSE VALUE IS THE FLOATING-POINT NUMBER 180.0.
F2LOG SFP=-VALUE> F2LUG <FP=RESULT>
COMPUTE THE LOGARITHM, BASE 2 0OF <FP-VALUE> AND LEAVE THE
RESULT ON THE STACK.
Fexp <FP-VALUE> F2XP <FP-RESULT>
COMPUTE 2.0 **% <FP=-VALUE> AND LEAVE THE RESULT ON THE STACK.
F90., .
AN FCONSTANT WHOSE VALUE IS THE FLOATING-POINT NUMBER 90.0.
F< <SFP-VALUE1> <FP-VALUE2> F< <LOGICAL-VALUE>
F= SFP-VALUEL> <FP-VALUE2> F= <LOGICAL-VALUE>
F> <FP-VALUEL> <FP-VALUE2> F> <LOGICAL-VALUE>
COMPARE <FP-VALUE1> AND <FP-VALUE2> AND LEAVE A SLOGICAL—-VALUE>
OF TRUE ON THE STACK IF THE INDICATED RELATION IS TRUE »
OTHERWISE LEAVE A <LOGICAL-VALUE> OF FALSE ON THE STACK.
F? <ADDRESS> F?
EQUIVALENT TO THE SEQUENCE "“F3 F.m,
FABS SFP=-VALUE> FABS <FP=-RESULT>
REPLACE <FP=VALUE> BY ITS ABSOULUTE VALUE,
FASK FASK <FpP=-VALUE>
REQUEST THE INPUT OF A FLOATING-POINT NUMBER FROM THE TERMINAL «
FCONSTANT <SFP=-VALUE> FCONSTANT <NAME>
DEFINE THE WORD <NAME> WHICH WHEN EXECUTED WILL PUSH ITS
FLOATING-POINT VALUE ONTO THE STACK. THE VALUE GOF <NAME> IS
INITIALIZED TO <FP-VALUE>, THE VALUE OF THIS CONSTANT MAY BE
CHANGED BY EXECUTING THE SEQUENCE M"<FP-VALUE> ' <NAME> F 1w,
FD» <FP-VALUE> FD,

CONVERTS <FP-VALUE> TO A DOUBLE-WORD FRACTION AND PLACES THE
FRACTION IN THE NEXT TWO DICTIONARY LOCATIONS.

Feb. 1979 D-37

FDATN

FDCOS

FDSIN

FDTAN

FEXP ,

FEXP10

FHALF

FIND

FIX

FL2

FL2E

D-38

FORTH GLOSSARY IMASEN () *4,~,/0123456789:;5;<=>2AZ(\]1"_

<FP-VALUEl> <FP-VALUE2> FDATN <FP-RESULT>
COMPUTE THE ARCTANGENT (IN DEGREES) OF <FP-VALUE1l> /
<FP-VALUE2>, LEAVING THE RESULT ON THE STACK. THE RESULT WwILL
BE IN THE RANGE 0.0 THROUGH 359,999,

<FP-VALUE> FDCOS <FP-RESULT>
COMPUTE THE COSINE OF <FP-VALUE> (IN DEGREES) AND LEAVE THE
RESULT ON THE STACK,

<FP-VALUE> FDSIN <FP-RESULT?>
COMPUTE THE SINE OF <FP-VALUE> (IN DEGREES) AND LEAVE THE
RESULT ON THE STACK.

<FP-VALUE> FDTAN <FP-RESULT?>
COMPUTE THE TANGENT OF <FP-VALUE> (IN DEGREES) AND LEAVE THE
RESULT ON THE STACK.

SFP-VALUE> FEXP <FP=RESULT>
COMPUTE E *% <FP-VALUE> (WHERE E 1S THE BASE OF THE NATURAL
LOGARITHMS, 2.71828.44) AND LEAVE THE RESULT ON THE STACK.

<FP-VALUE> FEXP10 <FP-RESULT>
COMPUTE 10.0 ** <FP-VALUE> AND LEAVE THE RESULT ON THE STACK.

AN FCONSTANT WHOSE VALUE IS THE FLOATING-POINT NUMBER 0.5,

FIND <NAME> <RESULT?>
IF A DICTIONARY ENTRY FOR <NAME> IS FOUND THEN FIND RETURNS THE
COMPILATION ADDRESS OF <NAME> (THE ADDRESS THAT WOULD NORMALLY
BE COMPILED WHEN <NAME> IS ENCOUNTERED IN A COLON-DEFINITION),
IF THE DICTIONARY ENTRY IS NOT FOUND THEN FIND RETURNS A VALUE
OF ZERO ON THE STACK.

SSTARTING~BLOCK#> <ENDING-BLOCK#> FIX

WORD REPLACEMENT. THE WORDS TO BE REPLACED MUST HAVE PREVIOUSLY
BEEN SPECIFIED USING THE WORDS REPLACE AND SREPLACE. THE WORD
FIX THEN GOES THROUGH THE DESIGNATED BLOCKS AND REPLACES ALL
OCCURENCES OF THE WURDS THAT WERE SPECIFIED BY REPLACE AND
SREPLACE WITH THEIR NEW REPRESENTATIONS, A LISTING OF ALL
CHANGES IS OQUTPUT TO THE CURRENT OUTPUT DEVICE. BEWARE THAT
THIS WORD REPLACES ALL OCCURENCES OF THE SPECIFIED HDRDS, EVEN
WITHIN COMMENTS OR CHARACTER STRINGS!

AN FCONSTANT WHOSE VALUE IS THE FLOATING-POINT NATURAL
LOGARITHM OF 2.0, THAT IS» 0.693147181.

AN FCONSTANT WHOSE VALUE IS THE FLOATING-POINT LOGARITHM, BASE
2 GF E (THE BASE OF THE NATURAL LOGARITHMS, 2.718284as)s THAT

Feb. 1979

FORTH GLOSSARY INETEY () *4,~,/0123456789:;<=>2A71\]1"_

FLD

FLIT

FLN

FLOATING

FLOG

FLUSH

FMAX

FMIN

FMINUS

FORGET

FORMATTER

Feb. 1979

A VARTABLE THAT ONE SETS TC THE TOTAL FIELD LENGTH DESIRED FOR
NUMERIC OUTPUT, SEE DPL AND WD

STORE IN THE NEXT AVAILABLE DICTIONARY LOCATION THE ADDRZSS OF
THE ROUTINE WHICH PLACES FLOATING-POINT LITERALS ON THE STACK
AT EXECUTION TIME.

<FP-VALUE> FLN <FP-RESULT?>
COMPUTE THE NATURAL LOGARITHM (QOF <FP-VALUE> AND LEAVE THE
RESULT ON THE STACK.

(gLo)

SETS AN INTERNAL FLAG TO INDICATE THAT NUMBERS CONTAINING A
PERIOD ARE TO BE INTERPRETED AS FLOATING-POINT NUMBERS, NOT AS
DOUBLE-WORD INTEGERS. SEE DPREC.

SFP-VALUE> FLOG <FP=-RESULT>
COMPUTE THE LOGARITHM, BASE 10 OF <FP-VALUE> AND LEAVE THE
RESULT ON THE STACK.,

WRITE ALL BLOCKS THAT HAVE BEEN FLAGGED AS UPDATED TO DISC OR
TAPE. SEE UPDATE.,

SFP-VALUE1> <FP-VALUE2> FMAX <FP-RESULT>
LEAVE THE GREATER OF <FP-VALUE1> AND <FP-VALUE2> ON THE STACK.

SFP=VALUE1> <FP-VALUE2> FMIN <FP-RESULT>
LEAVE THE LESSER OF <FP-VALUE1> AND <FP~VALUEZ2> ON THE STACK.

<SFP-VALUE> FMINUS <FP=-RESULT>
NEGATE <FP-VALUE> AND LEAVE THE RESULT ON THE STACK.,

FORGET <NAME>

DELETE THE DICTIONARY ENTRY FOR <NAME> AND ALL DICTIONARY
ENTRIES FOLLOWING IT (I.E.s EVERYTHING THAT HAS BEEN ENTERED
INTO THE DICTIONARY AFTER THE DEFINITION OF <NAME>), THOUGH
<NAME> MUST BE IN THE CONTEXT VOCABULARY, THE WORDS THAT FOLLOW
IT IN THE DICTIONARY ARE DELETEDs REGARDLESS WHICH VOCABULARY
THEY BELONG TO. NORMALLY, FORGET SHOULD NOT BE USED WITHIN A
COLON DEFINITION AS IT IS NOT A COMPILER DIRECTIVE. FOR SUCH
APPLICATIONS THE WORD REMEMBER SHOULD BE USED.

LOADS THE DISC FORMATTING WORDSs WHICH ARE SELF EXPLANATORY.,
SEE UTIL.

D-39

FORTH

FPREAD

FRATN

FREE

FRESTORE

FSAVE

FSQRT

Fuw

FWSP

D-40

FORTH GLOSSARY IMPSEN () %4, =-,/012345678923<3>29A2[\]1"_

(P)

THE NAME OF THE PRIMARY VOCABULARY. EXECUTION OF THE WORD FORTH
CAUSES FORTH TO BECOME THE CONTEXT VOCABULARY. SINCE FORTH
CANNOT BE CHAINED TO ANY OTHER VOCABULARY, IT BECOMES THE ONLY
VOCABULARY THAT WILL BE SEARCHED FOR DICTIONARY ENTRIES. UNLESS
ADDITIONAL USER VOCABULARIES ARE DEFINED» NEW USER WORDS
NORMALLY BECOME PART OF THE FORTH VOCABULARY.

FPREAD <VALUE>
READ THE FRONT PANEL SWITCH SETTING ON THE CPU AND LEAVE THE
RESULTING 16-BIT VALUE ON THE STACK.

<FP-VALUELl> <FP-VALUE2> FRATN <FP-RESULT>
COMPUTE THE ARCTANGENT (IN REVOLUTIONS) OF <FP-VALUELl> /
<FP-VALUE2>, LEAVING THE RESULT ON THE STACK. NOTE THAT THIS
WORD DOES NOT COMPUTE THE ARCTANGENT IN RADIANS BUT IN
REVOLUTIONS.

SETS THE VARIABLE FLD TO O AND THE VARIABLE DPL TO -1 WHICH
SPECIFY THAT NUMBRIC OUTPUT IS TO BE FREE FORMAT, THAT IS
MINIMUM FIELD WIDTH AND NO RADIX POINT,

!

THIS WORD MUST BE EXECUTED BY AN INTERRUPT PROCESSING WORD
WHICH HAS PREVIOUSLY EXECUTED FSAVE. FRESTORE WILL RESTORE ALL
THE VARIABLES SAVED BY FSAVE.

THIS WORD MUST BE EXECUTED BY AN INTERRUPT PROCESSING WORD
PRIOR TO THE USE OF ANY FLOATING-POINT OPERATIONS. THIS WOIRD
WILL SAVE ALL OF THE NON-REENTRANT VARIABLES USED BY THE
FLOATING POINT WORDSe SEE FRESTORE.,

<SFP-VALUE> FSQRT <FP-RESULT?>

COMPUTE THE SQUARE ROOT OF <FP-VALUE> AND LEAVE THE RESULT ON
THE STACK.

INITIATE THE FDORWARD SPACING OF A SINGLE MAG TAPE RECORD AND
RETURN IMMEDIATELY., SEE FWSP.

INITIATE THE FORWARD SPACING OF A SINGLE MAG TAPE RECORD AND
WAIT FOR THE OPERATION TO COMPLETE. SEE FW.

Feb. 1979

FORTH GLOSSARY INHBEY ()*+,-4/01234567891;5;<=>29AZ[\]1"_

G

G?

GCH

GO

GO-T0

GODbOo

GS

Feb. 1979

<FP-VALUE> G,
GENERALIZED FLOATING-POINT OUTPUT. QUTPUT THE <FP-VALUE> TO THE
CURRENT OQUTPUT DEVICE (USUALLY THE OPERATOR'S TERMINAL). IF THE
VALUE IS EITHER TOO LARGE OR TOO SMALL TO BE OUTPUT BY F. THEN
Ee WILL BE USED.

<ADDRESS> G?
EQUIVALENT TO THE SEQUENCE "F3 G.",

GCH <CHAR-CODE>
WAIT FOR A CHARACTER TO BE ENTERED ON THE TERMINAL AND PUSH ITS
7-BIT ASCII CODE ONTO THE STACK. SEE WCH. SEE APPENDIX A FOR A
LISTING OF THE ASCII CODES.

(0LD)
LOAD BASIC FORTH (BLOCK 8) INTO THE DICTIONARY,

<LINE#> GO-TO
INTERRUPT INTERPRETATION OF THE CURRENT BLOCK AND RESUME
INTERPRETATION STARTING WITH THE FIRST CHARACTER (QF THE
SPECIFIED LINE IN THE CURRENT BLOCKe. THIS WORD MAY ONLY BE USED
DURING THE LOADING OF A BLOCK. SEE IN,

(C) GO00 WORDO WGRD1 o WORDN THEN

COMPUTED GO TO. WHEN THE WORD GODO IS EXECUTED THE VALUE QN TOP
OF THE STACK SPECIFIES WHICH WORD IN THE SEQUENCE IS TO BE
EXECUTED. IF THE VALUE <= O THEN WORDO IS EXECUTED; IF VALUE =
1 THEN WORD1 IS EXECUTED; IF VALUE = 2 THEN'WORD2 IS EXECUTED; -
eee IF VALUE >= N THEN WORDN IS EXECUTED.

PUTS THE 4010 IN GRAPHICS MCDE AND PRODUCES A DARK VECTGR ON
THE NEXT COMMAND. SEE US.

D-L41

HBLOCK

HEAD

HERE

HEX

D-42

FORTH GLOSSARY INHSEY () *+,-,/0123456789: 5<=2>29AZ(\1"_

SVALUE> H.
HEXADECTIMAL OQUTPUT, QUTPUT <VALUE> AS A HEXADECIMAL NUMBERS»
UNSIGNED AND PRECEDED BY A BLANK ON THE CURRENT QUTPUT DEVICE
(USUALLY THE OPERATOR'S TERMINAL). THE FORMAT SPECIFICATIONS

GIVEN BY THE VARIABLES FLD AND DPL ARE OBSERVED. BASE IS NOT
CHANGED.,

<BLOCK#> HBLOCK

READ A FORTH BLOCK FROM DISC. THIS WORD SHOULD BE USED IN PLACE
OF THE WORD BLOCK IF THERE ARE HARDWARE ERRCRS ON THE DISC. THE
BLOCK IS READ BY SECTORS (TWGO SECTORS COMPRISE EACH BLOCK) WITH
UP TO FIVE RETRIES PER SECTORs, IN AN ATTEMPT TO RECOVER AS MUCH
JdF THE BLOCK AS POSSIBLE. THE DISC STATUS WORD IS OUTPUT IF
ERRORS ARE ENCOUNTERED. NOTE THAT UNLIKE THE WORD BLOCK, HBLOCK
DOES NOT RETURN AN ADDRESS ON THE STACK., INSTEAD, THE WORD PREV
MAY BE USED TO OBTAIN THE MEMORY ADDRESS OF THE BLOCK.

HEAD <ADDRESS?>
RETURNS A POINTER TO THE FIRST LOCATION OF THE LAST WORD

DEFINED IN THE CURRENT VOCABULARY. HEAD IS EQUIVALENT TO THE
SEQUENCE "CURRENT a",.

HERE <ADDRESS?>
PUSH ONTO THE STACK THE ADDRESS OF THE NEXT AVAILABLE
DICTIONARY LOCATION. SINCE THE DICTIONARY POINTER MAY BE AN
INTERNAL REGISTER RATHER THAN A VARIABLE», IT SHOULD ONLY BE
ACCESSED THROUGH THE WORDS HERE AND DP+!.

SET THE NUMERIC CONVERSION BASE TO HEXADECIMAL, THAT IS, SET
THE VARIABLE BASE TO 16. SEE DECIMAL AND CCTAL.

Feb. 1979

FORTH GLOSSARY IMESEN () *+4,-,/012364567898;<=>2AZ1\1"_

I

I

I,

I/0

Feb.

1979

(c) I <VALUE>
PUSHES ONTO THE STACK THE CURRENT VALUE OF THE LOOP INDEX OF
THE INNERMOST DO-LOOP CURRENTLY BEING EXECUTED. I MAY ONLY BE
EXECUTED WITHIN THE WORD WHICH ACTUALLY EXECUTED THE DO-LOQP
AND NOT FROM WITHIN SOME OTHER WORD WHICH HAS ITSELF BEEN
EXECUTED FROM WITHIN THE DO-LOOP. SEE I', THE FOLLOWING XAMPLE
WILL NOT WORK CORRECTLY:

2 A L XY 1 RN H

: B L) DO [N} A e s L GoP LI) H
THIS WORD MAY ALSO BE USED TO PUSH ONTO THE STACK A VALUE WHICH
WAS PUSHED ONTO THE RETURN STACK USING >R. SEE >R AND R>,

() Iv <vaLug»>

PUSHES ONTO THE STACK THE CURRENT VALUE OF THE LOGP INDEX OF
THE INNERMOST DO-LOOP CURRENTLY BEING EXECUTED IN THE WORD
WHICH HAS CALLED THE WORD IN WHICH I' RESIDES. SINCE THE WORD 1
MAY NOT BE EXECUTED AT ANY LEVEL OTHER THAN WITHIN THE WORD
WHICH EXECUTES THE DO-LDOPs I' GIVES ONE ACCESS TO THE LOQP
PARAMETER AT ONE ADDITIONAL LEVEL. THE FOLLOWING EXAMPLE IS
VALID:

A LY I e s e H

B cee DO veoe A ces LGaOP H

(A)

SETS THE VARIABLE MODE TO 7, SPECIFYING INDIRECT ADDRESSING FOR
THE NEXT MEMORY REFERENCE INSTRUCTION, NOTE THAT THIS WORD
DESIGNATES THE INSTRUCTION AS INDIRECT WHILE THE WORD 0)
DESIGNATES AN ADDRESS AS INDIRECT.

<VALUE> <FIELD-WIDTH> 1I.
SINGLE-WORD INTEGER QUTPUT. CONVERT <VALUE> ACCORDING TO THE
CURRENT NUMBER BASE AND DUTPUT IT TO THE CURRENT OQUTPUT DEVICE
(USUALLY THE OPERATOR'S TERMINAL) USING THE SPECIFIED FIELD
WIDTHs NO RADIX POINT IS PRINTED.

(A <SVALUE> 1I/0 <NAME>

DEFINE <NAME> AS A SINGLE-WORD MACHINE INSTRUCTION WHOSE BASIC
MACHINE CODE REPRESENTATION IS <VALUE>., WHEN <NAME> IS EXECUTED
THE TOP NUMBER ON THE STACK (USUALLY A DEVICE CODE, SHIFT COUNT
UR REGISTER SPECIFICATIGON) IS INCLUSIVELY OR-ED WITH <VALUE>
AND THE RESULT IS STORED IN THE NEXT AVAILABLE DICTIDONARY
LOCATION. SEE CPUs DL AND M/CPU.

D-43

LAR,

IBR»

IC

iD.

IF

IF»

D-4k

FORTH GLOSSARY INEEEY (I k4, =e/ 01234567891 3<=2>23AZ0\1"_

(A)
THE ASSEMBLER MNEMONIC FOR THE VARIAN TIAR INSTRUCTION
(INCREMENT THE A REGISTER).

(A)
THE ASSEMBLER MNEMONIC FOR THE VARIAN IBR INSTRUCTION
(INCREMENT THE B REGISTER).

THE INTERPRETER INSTRUCTION COUNTER. A VARIABLE CONTAINING THE
ADDRESS OF THE NEXT WORD TO EXECUTE.

<ADDRESS> 1ID,
PRINT THE 3-CHARACTER/LENGTH IDENTIFIER OF THE WORD WHOSE
DICTIONARY ENTRY STARTS AT THE SPECIFIED ADDRESS. USEFUL IN
ANALYZING DUMPS.

(C2+,P) <LOGICAL-VALUE> IF (TRUE-PART) ELSE (FALSE-PART)
<LOGICAL=-VALUE> IF (TRUE-PART) THEN

IF IS THE FIRST WORD OF A CONDITIONAL BRANCH. IF THE
<LOGICAL-VALUE> IS TRUE (NON=-ZERO) THE TRUE-PART WILL BE
EXECUTED. IF THE <LOGICAL-VALUE> IS FALSE (ZERO) THE
FALSE-PART» IF PRESENT, WILL BE EXECUTED . IF THE
<LO0GICAL-VALUE> IS FALSE AND THERE IS NO FALSE-PART SPECIFIED
THE ENTIRE IF-THEN IS SKIPPED OVER AND EXECUTION RESUMES WITH
THE WORDS FOLLOWING THE THEN. IF-ELSE-THEN CONDITIONALS MAY BE
NESTED.

THEN

(A) <JUMP-CONDITION> IF, (TRUE-PART) ELSEs (FALSE-PART) THEN,

<JUMP=-CONDITION> IFs (TRUE=-PART) THEN,

IF, IS THE FIRST WORD OF A CONDITIONAL BRANCH. IF THE
<JUMP=-CONDITION> IS TRUE THEN THE SEQUENCE oF MACHINE
INSTRUCTIONS COMPRISING THE TRUE-PART WILL BE EXECUTED. IF THE
<JUMP-CONDITION> IS FALSE THE SEQUENCE OF MACHINE INSTRUCTIONS
COMPRISING THE FALSE-PART WILL BE EXECUTED. IF THE
<JUMP-CONDITION> IS FALSE AND THERE IS NO FALSE-PART SPECIFIED,
THE ENTIRE IF,-~THEN, IS SKIPPED OVER AND EXECUTION RESUMES WITH
THE FIRST INSTRUCTION FOLLOWING THE THEN,. THE <JUMP-CONDITION?
IS USUALLY SPECIFIED BY ONE OF THE WORDS A+, A=y AO, BO OR OV,
IFs~ELSE»=THEN, CONDITIONALS MAY BE NESTED.

Feb. 1979

FORTH GLOSSARY IMHSEY () %x+y—,/0123456789: ;<=>29A7Z(\1"_

IFEND (E)
TERMINATE A CONDITIONAL INTERPRETATION SEQUENCE BEGUN BY AN
IFTRUE,

IFTRUE (E) <LOGICAL-VALUE> IFTRUE ven OTHERWISE eee IFEND

SLOGICAL-VALUE> IFTRUE e IFEND
THESE WORDS ARE SIMILAR TO THE IF-ELSE-THEN CONDITIONAL>
HOWEVER THE IFTRUE-OTHERWISE-IFEND CONDITIONALS ARE TO BE USED
DURING COMPILATION, ADDITIONALLY, UNLIKE THE IF-ELSE-THEN
CONDITIONAL, THE IFTRUE-OTHERWISE-IFEND CONDITIONALS MAY NOT BE

NESTED.

TJMP, {(a) <ADDRESS> <VALUE> 1JdMP,
THE ASSEMBLER MNEMONIC FOR THE VARIAN IJMP INSTRUCTION (INDEXED
JUMP Y,

IME>» (A) <ADDRESS> <DEVICE-CODE> 1IME»
THE ASSEMBLER MNEMONIC FOR THE VARIAN IME INSTRUCTION (INPUT TO
MEMORY) .,

IMMEDIATE (OLD)
MARK THE MOST RECENTLY CREATED DICTIONARY ENTRY SUCH THAT WHEN
IT IS ENCOUNTERED AT COMPILE TIME IT WILL BE EXECUTED RATHER
THAN COMPILED,

IMOVE <SOURCE-ADDR> <DESTINATION-ADDR> IMOVE

MOVE A GROUP OF SEQUENTIAL MEMORY CELLSs IN INVERSE ORDER, FROM
THE <SOURCE-ADDR> TO THE <DESTINATION-ADDR>, THE LENGTH IS
SPECIFIED BY <#CELLS>. INVERSE ORDER MEANS THAT THE LAST CELL
IN THE SOURCE FIELD IS MOVED TO THE FIRST CELL OF THE
DESTINATION FIELD», THE NEXT TO LAST CELL IN THE SOURCE FIELD IS
MOVED TO THE SECOND CELL OF THE DESTINATION FIELD, ETC. SEE
MOVE »

imMp IMP <NAME>
IF <NAME> IS THE NAME OF AN OVERLAY WHICH HAS PREVIOUSLY BEEN
DEFINED AND SAVED THEN THIS WILL SET THE PRECEDENCE BIT OF THE
OVERLAY, IDENTIFYING IT AS A VARIABLE OVERLAY. WHEN A VARIABLE
OVERLAY IS IN THE MEMORY OVERLAY REGIUN AND ANDTHER OVERLAY IS
TO BE READ INs» THE VARIABLE OVERLAY IS FIRST RE-WRITTEN TO
DISC.

IMP (0OLD) IMP <NAME>
TOGGLES THE PRECEDENT BIT OF THE SPECIFIED DICTIONARY ENTRY,

IN
A VARTABLE CONTAINING THE INDEX OF THE CHARACTER BEING
INTERPRETED. ALTHOUGH THIS INDEX IS INITIALIZED AND INCREMENTED
AUTOMATICALLY DURING INTERPRETATIONs, IT MAY BE MODIFIED TO
AFFECT THE SEQUENCE OF INTERPRETATION. SEE GO-TO.

Feb. 1979 D-45

INCLUDES

INCR>

INRS

INTEGER

INTX

Ip

ISR2

IRy

D-46

FORTH GLOSSARY INEGEY () %+,~,/01234567892;<2>2A2[\1"_

<NAME1> INCLUDES <NAMEZ2>

<NAME1> MUST BE THE NAME OF AN OVERLAY WHICH HAS PREVIOUSLY
BEEN DEFINED AND SAVED; <NAMEZ2> MUST BE THE NAME OF A WORD
WHICH WAS ODEFINED IN THAT OVERLAY. <NAMEZ2> THEN BECOMES A
DICTIONARY ENTRY IN MEMORY SO THAT EXECUTION OF <NAMEZ2> WILL
FIRST READ THE NEEDED OVERLAY INTO MEMORY AND THEN EXECUTZ: THE
COPY OF <NAME2> IN THAT OVERLAY. REFERENCES MAY THEN BE MADE TO
<SNAME2> AS IF IT WERE PART OF THE DICTIONARY IN MEMORY. COMPARE
THIS IMPLICIT LOADING OF AN OVERLAY WITH THE EXPLICIT LOADING
PROVIDED BY 0-L0AD. IF ANOTHER OVERLAY IS PRESENTLY IN MEMORY
AND IF ITS PRECEDENCE BIT IS SET (SEE IMP) THEN IT WILL B8E
WRITTEN TO DISC BEFORE <NAME1> IS READ INTO MEMORY.

(A) <SVALUE> INCR»
THE ASSEMBLER MNEMONIC FOR THE VARIAN INCR INSTRUCTION
(INCREMENT AND COMBINE REGISTERS).

(A) <ADDRESS> 1INR»
THE ASSEMBLER MNEMONIC FOR THE VARTAN INR INSTRUCTION
(INCREMENT A WORD OF MEMORY).

(OLD)
RENAMED VARIABLE.,

<VALUE> INTX
DEFINE A PSEUDOC-VECTOR INTEGER VARIABLE, INITIALIZED 71O
<SVALUE>. THE VALUE OF THIS VARIABLE MAY BE ACCESSED BY RCLX OR
STORED BY STRX, AND IS ACCESSIBLE ONLY WITHIN A COLON
DEFINITION. THESE WORDS ARE DESIGNED FDOR CORE AND SPEED
EFFICIENCY AND EACH INTX DECLARATION REQUIRES 3 DICTIONARY
CELLS. SEE P-VX,

(C)
A VARIABLE CONTAINING THE BYTE ADDRESS OF THE NEXT CHARACTER TO
BE RETURNED BY CHFETCH. SEE COUNT, TYPE AND WRITE.

A 2CONSTANT WHOSE VALUE IS THE DOUBLE-WORD FRACTION 2 *% -0.5,

{A)

THE ASSEMBLER MNEMONIC FOR THE VARIAN IXR INSTRUCTION
(INCREMENT THE X REGISTER). NOTE THAT THE X REGISTER IS THE
STACK POINTER IN VARIAN FORTH» THEREFORE THIS INSTRUCTION
DEALLOCATES ONE WORD OF THE STACK.

Feb. 1979

FORTH GLOSSARY PMASE Y () %4,-,/01234567898;5;<=>22AZ(\]1"_

J (C) J <VALUE>
WITHIN A NESTED DO-LOOP» THIS WORD PUSHES ONTO THE STACK THE
CURRENT VALUE OF THE LOOP INDEX OF THE NEXT OUTER LOOP. J MAY
ONLY BE EXECUTED WITHIN THE WORD WHICH ACTUALLY EXECUTED THE
00-LOOP AND NOT FROM WITHIN SOME OTHER WORD WHICH HAS ITSELF
BEEN EXECUTED FROM WITHIN THE DO-LOOP. SEE I.

JIF, (A} <ADDRESS> <JUMP-CONDITION> JIF,
THE ASSEMBLER MNEMONIC FOR THE VARIAN JIF INSTRUCTION
(CONDITIONAL JUMP). THE <JUMP=-CONDITION> IS USUALLY SPECIFIED
BY ONE OF THE WORDS A+s A-, AOs BO OR 0OV.

JIFM, (A) <ADDRESS> <JUMP-CONDITION> JIFM,
THE ASSEMBLER MNEMONIC FOR THE VARIAN JIFM INSTRUCTION
(CONDITIONAL JUMP AND MARK). THE <JUMP-CONDITION> IS USUALLY
SPECIFIFED BY ONE OF THE WORDS A+s A-, AOs BO OR 0OV,

JMP, {(a) <ADDRESS> JMP,
THE ASSEMBLER MNEMONIC FOR THE VARTAN JMP INSTRUCTION
(UNCONDITIONAL JUMP).

JMPM, (A) <ADDRESS> JMPM,
THE ASSEMBLER MNEMONIC FOR THE VARIAN JMPM INSTRUCTION
(UNCONDITIONAL JUMP AND MARK).

JSR» (A) <ADDRESS> <VALUE> JSR,
THE ASSEMBLER MNEMONIC FOR THE VARIAN JSR INSTRUCTION (JUMP AND
SET THE RETURN ADDRESS IN ONE OF THE REGISTERS),

K (C) K <VALUE>
WITHIN A NESTED DO-LOOP, THIS WORD PUSHES ONTO THE STACK THE
CURRENT VALUE OF THE LOOP INDEX OF THE SECOND QUTER LOOP. K MAY
ONLY BE EXECUTED WITHIN THE WORD WHICH ACTUALLY EXECUTED THE
DO~LOOP AND NOT FROM WITHIN SOME OTHER WORD WHICH HAS ITSELF
BEEN EXECUTED FROM WITHIN THE DO-LOOP. SEE 1.

KCURSDR KCURSOR <Y=POSN> <X=PDSN>
TURNS ON THE 4010 CROSS HAIR CURSORS AND WAITS FOR THE OPERATOR
10 ENTER ANY CHARACTER, THREE SINGLE-WORD INTEGEPS ARE
RETURNED, THE X AND Y POSITIONS OF THE CURSORS AND THE ASCII
CHARACTER CODE FOR THE CHARACTER THAT THE OPERATOR ENTERED.

Feb. 1979 D-47

L2B10O

LAL S

LAR

LDAs

LDB»

LDXy

LEAVE

LENGTH

D-48

FORTH GLNOSSARY IMHTET () %4+, -4/ 0123456789:35<=>20AZ(\1"_

AN FCONSTANT WHOSE VALUE IS THE FLOATING=PCINT LOGARITHM, BASE
10 OF 2.0, THAT IS, 0.301029996.

(A) SSHIFT-COUNT> LAL,
THE ASSEMBLER MNEMONIC FOR THE VARIAN LASL INSTRUCTION (_ONG
ARITHMETIC SHIFT LEFT).

(A) SSHIFT-COUNT?> LAR»
THE ASSEMBLER MNEMONIC FOR THE VARIAN LASR INSTRUCTION (LONG
ARITHMETIC SHIFT RIGHT).

A VARTABLE CONTAINING THE COMPILATION ADDRESS OF THE MOST
RECENTLY MADE DICTIONARY ENTRYs WHICH MAY NOT YET BE A COMPLETE
OR VALID ENTRY. IN ORDER TO EXECUTE A WORD RECURSIVELY, THE
SEQUENCE "™[(P] : MYSELF LAST 2 » ;" DEFINES THE WORD MYSELF
WHICH MAY THEN BE USED WITHIN A COLON DEFINITION TO RECURSIVELY
EXECUTE THE WORD BEING DEFINED.

(A) <ADDRESS> LDA,
THE ASSEMBLER MNEMONIC FOR THE VARIAN LDA INSTRUCTION (LOAD THE
A REGISTER FROM MEMORY).

A <ADDRESS> LDB»
THE ASSEMBLER MNEMONIC FOR THE VARIAN LDB INSTRUCTION (LOAD THE
B REGISTER FROM MEMORY).,

(A) <ADDRESS> LDX,

THE ASSEMBLER MNEMONIC FOR THE VARIAN LDX INSTRUCTION (LOAD THE
X REGISTER FROM MEMORY). NOTE THAT THE X REGISTER IS THE STACK
POINTER IN VARIAN FORTH,

(c)

FORCE TERMINATION OF A DO-LOOP AT THE NEXT OPPORTUNITY BY
SETTING THE LCOP LIMIT EQUAL TO THE CURRENT VALUE OF THE LOOP
INDEXs, THE VALUE OF THE INDEX REMAINS UNCHANGED AND EXECUTION
CONTINUES THROUGH THE LOOP WITH THE TERMINATION OCCURING AT THE
NEXT EXECUTION OF EITHER LOOP UR +LOGP,.

<#POINTS> LENGTH
SPECIFY THE NUMBER OF POINTS FOR AN FFT. <#POINTS> IS THE
NUMBER OF REAL, DOUBLE-WORD INTEGER DATA PCOINTS FOR DFOURTRAN
AND MUST BE A POWER OF 2. FOR DINVTRAN, (<#POINTS> /7 2) + 1
COMPLEX, DOUBLE-WORD INTEGER DATA POINTS WILL YIELD <#PQOINTS>
REAL» DOUBLE-WORD INTEGER POINTS.,

Feb. 1979

FORTH GLOSSARY PURBEN () *4,-,/0123456789:;5<=>29A20\]1"_

LINE

LINEIN

LINELOAD

LINEWRITE

LIST

LIT

LIT»

LITERAL

LLRL,

LLSR»

Feb. 1979

SLINE#> LINE <ADDRESS?>
PUSHES ONTO THE STACK THE ADDRESS IN MEMORY OF THE FIRST
CHARACTER 0OF THE SPECIFIED LINE IN THE BLOCK WHOSE BLOCK NUMBER
IS CONTAINED IN THE VARIABLE BLK.

LINEIN <ADDRESS?
PEQUEST A LINE GOF INPUT FROM THE TERMINAL. THE LINE IS
TERMINATED BY A CARRIAGE RETURN AND THE MEMORY ADDRESS OF THE
CHARACTER STRING (WHICH IS STORED IN THE AVAILABLE DICTIONARY
SPACE) IS RETURNED ON THE STACK.

- <LINE#> <BLOCK#> LINELOAD
BEGIN INTERPRETING AT THE SPECIFIED LINE OF THE SPECIFIED
BLOCK. THE SEQUENCE "<BLOCK#> LOAD" IS EQUIVALENT TO THE
SEQUENCE "1 <BLOCK#> LINELOAD™,

SLINE#> LINEWRITE
QUTPUT T2 THE CURRENT OUTPUT DEVICE (USUALLY THE OPERATOR'S
TERMINAL) THE SPECIFIED LINE (64 CHARACTERS) OF THE BLOCK WHOSE
BLOCK NUMBER IS CONTAINED IN THE VARIABLE BLK,

|

<BLOCK#> LIST
LIST THE ASCII SYMBOLLIC CONTENTS OF THE SPECIFIED BLOCK ON THE
CURRENT OUTPUT DEVICE (USUALLY THE OPERATCR'S TERMINAL).

(3LDsC)
RENAMED /LIT/.

(9LD)
RENAMED /LIT/.

THE WORD IN BASIC FORTH WHICH EITHER PUSHES A NUMBER ONTO THE
STACK OR COMPILES IT INTO THE DICTIONARY, DEPENDING ON THE
CURRENT STATE (COMPILING OR EXECUTING).

(a) SSHIFT-COUNT> LLRLs
THE ASSEMBLER MNEMONIC FOR THE VARIAN LLRL INSTRUCTION (LONG
LOGICAL ROTATE LEFT).

(A) SSHIFT-COUNT> LLSR»

THE ASSEMBLER MNEMONIC FOR THE VARIAN LLSR INSTRUCTION (LONG
LOGICAL SHIFT RIGHT).

D-49

LUOAD

LCADER

L0G2(10)

LOGP

LPLOT

LRL»

LRLB>

LS

LSR»

LSRB»

LWA?

D-50

FORTH GLOSSARY IMAGEY () *+,~-,/0123456T789:8;<=>29AZ[\]1"_

<BLOCK#> LOAD
REGIN INTERPRETATION OF THE SPECIFIED BLOCKs STARTING WITH THE
FIRST LINE IN THE BLOCK. THE BLOCK MUST TERMINATE ITS OWN
INTERPRETATION WITH EITHER ;S, =--> OR CONTINUED.

<BLOCK#> LOADER <NAME>
DEFINE THE WORD <NAME> WHICH, WHEN EXECUTED» WILL CAUSE THE
SPECIFIED BLOCK TO BE LOADED.

AN FCONSTANT WHOSE VALUE IS THE FLOATING-POINT LOGARITHMs BASE
2 OF 10.0s, THAT IS, 3.32192809,

(C)
INCREMENT THE DO~LOOP INDEX BY +1, TERMINATING THE LOOP IF THE
NEW VALUE OF THE INDEX IS EQUAL TO OR GREATER THAN THE LIMIT,

<X-POSN> <Y-POSN> LPLOT
DRAWS A VECTOR ON THE 4010 TO THE LOGICAL POSITION SPECIFIED BY
<X=POSN> AND <Y=-PUSN>, THIS NEW POSITION IS THEN SAVED 1IN
/4010. <X-POSN> AND <Y-POSN> ARE FLOATING-POINT NUMBERS IN THE
RANGE 0.0 - 1023.3 AND 0.0 - 780.0,

(A) SSHIFT-COUNT> LRL»
THE ASSEMBLER MNEMONIC FOR THE VARIAN LRLA INSTRUCTION (LOGICAL
ROTATE LEFT THE A REGISTER).

(A) <SHIFT-COUNT> LRLB»
THE ASSEMBLER MNEMONIC fOR THE VARIAN LRLB INSTRUCTION (LOGICAL
ROTATE LEFT THE B REGISTER}),

<SVALUE> <SHIFT=-COUNT> LS <RESULT>
ROTATE <VALUE> LOGICALLY LEFT OR RIGHT. IF THE <SHIFT=COUNT> IS
POSITIVE THE SHIFT IS5 A LOGICAL ROTATE LEFT WHILE IF
SSHIFT-COUNT> IS NEGATIVE THE SHIFT IS A LOGICAL ROTATE RIGHT.
SEE 2LS.

(A) SSHIFT-COUNT> LSRR,
THE ASSEMBLER MNEMONIC FOR THE VARIAN LSRA INSTRUCTION (LOGICAL
SHIFT RIGHT THE A REGISTER).

(A) <SHIFT-COUNT> L SRB,
THE ASSEMBLER MNEMONIC FOR THE VARIAN LSRB INSTRUCTION (LOGICAL
SHIFT RIGHT THE B REGISTER).

LWA? <ADDRESS?>

READ IN THE LAST-WORD-ADDRESS COUNTER OF THE MAG TAPE
CONTROLLER AND PUSH THIS ADDRESS ONTO THE STACK.

Feb. 1979

FORTH GLOSSARY IMHSEN ()% +4,-4/0123456769:;<=>2AZ20\1"_

M SVALUEL1> <VALUE2> M* <DW=-RESULT>
MIXED PRECISION MULTIPLYs FORMING A DOUBLE=-WORD PRODUCT FROM
TWO SINGLE-~-WORD MULTIPLICANDS. SEE 2Mx,

M+ <DW=-VALUE> <VALUE> M+ <DW-RESULT>
MIXED PRECISION ADDITION, ADDING THE SINGLE-WORD <VA._UE> TQO
<DW-VALUE> FORMING A DOUBLE-WORD RESULT.,

M/ <DW-VALUE> <VALUE> M/ <QUDTIENT>
MIXED PRECISICON DIVIDE» DIVIDING THE <DW-VALUE> B8Y THE
SINGLE~WORD <VALUE> FORMING A SINGLE-WORD <RESULT>., NOTE THAT
THE QUOTIENT IS TRUNCATED AND ANY REMAINDER IS LOST. SEE M/MOD.

M/CPU (A) SVALUE> M/CPU <NAME>

DEFINE <NAME> AS A MEMORY REFERENCE INSTRUCTION WHOSE BASIC
MACHINE CODE REPRESENTATION IS <VALUE>. WHEN <NAME> IS EXECUTED
THE TOP NUMBER ON THE STACK IS EITHER A MEMDRY ADDRESS OR AN
IMMEDIATE OPERAND AND THE CURRENT VALUE OF MODE DETERMINES THE
ADDRESSING MODE OF THE INSTRUCTION. THE VALUE OF <MODE>, THE
TOP NUMBER ON THE STACK AND THE LIMITATICONS O0OF THE VARIAN
HARDWARE WILL DETERMINE WHETHER THE SINGLE~WORD 0OR DOUBLE-WORD
VERSION OF THE INSTRUCTION IS GENERATED. THE INSTRUCTION WILL
BE STORED IN THE NEXT AVAILABLE WORD(S) OF THE DICTIONARY. SEE
CPUs DL AND I/O0.

M/MOD <DW-VALUE> <VALUE> M/MOD <REMAINDER> <QUOTIENT>
MIXED PRECISICN DIVIDE, DIVIDING THE <DW-VALUE> BY THE
SINGLE-WORD <VALUE> YIELDING A SINGLE-WORD <QUOTIENT> ON TOP OF
THE STACK AND A SINGLE-WORD <REMAINDER> BELOW. THE REMAINDER
WILL HAVE THE SIGN OF THE DIVIDEND.

MAPO (T) MAPO <ADDRESS>

THIS WORD PUSHES ONTO THE STACK THE ADDRESS OF THE FIRST
LOCATION IN THE TAPE MAP,

MARK <SSYMBOL> <SIZE> MARK
DRAWS A SYMBOL ON THE 4010 AT THE CURRENT POSITION. <SYMBOL> IS
A SINGLE-WORD INTEGER VALUE WHICH IS INTERPRETED AS FOLLOWS:

1 - PLUS SIGN
2 - CROSS

3 - BOX

4 ~— DIAMOND

<SIZE> IS A SINGLE~WORD INTEGER THAT SPECIFIES THE SYMBOL SIZE
IN POINTS (A STANDARD ALPHA CHARACTER IS 14 POINTS HIGH),

MAX SVALUE1> <VALUE2> MAX <RESULT>
LEAVE THE GREATER OF <VALUE1> AND <VALUE2> ON THE STACK.

Feb. 1979 D

51

MERG>

MESSAGE

MIN

MINUS

D-52

FORTH GLOSSARY IMETEN () *+,~-,/0123456789:;3;<3>20AZ[\1"_

(A) <VALUE> MERG)
THE ASSEMBLER MNEMONIC FOR THE VARIAN MERG INSTRUCTION (COMBINE
REGISTERS).

<DW-VALUE> MESSAGE
A SINGLE LINE (64 CHARACTERS) OF A BLOCK IS OUTPUT TL THE
CURRENT OUTPUT DEVICE (USUALLY THE OPERATOR'S TERMINAL) .
<DW-VALUE> SPECIFIES BOTH THE BLOCK# AND THE LINE#s WITH
<DW=VALUE> = (BLOCK# * 100) + LINE#. IF <DW-VALUE> IS POSITIVE
THEN A CARRTAGE RETURN WILL PRECEDE THE MESSAGE. A NEGATIVE
<DW-VALUE> MAY BE USED TO SPECIFY NO CARRIAGE RETURN.

<VALUE1> <VALUE2> MIN <RESULT>
LEAVE THE LESSER OF <VALUE1> AND <VALUE2> ON THE STACK.

<VALUE> MINUS <RESULT?>
NEGATE <VALUE> BY TAKING ITS TWOS-COMPLEMENT.

Feb. 1979

FORTH GLOSSARY PHASEY () *+,-,/0123456789:5<=>29A2L\ 1"

MQD

MODE

MOVE

MPY>

MS

MSEC

MSGO

Feb.

1979

<VALUEL1> <VALUE2> MOD <REMAINDER?>
CALCULATE <VALUE1> / <VALUE2> AND LEAVE ONLY THE REMAINDER ON
THE STACK. THE REMAINDER WILL HAVE THE SIGN 0OF THE DIVIDEND.,

(A)

A VARIABLE WHICH SPECIFIES THE TYPE OF ADDRESSING TO BZ USED
FOR THE NEXT MEMORY REFERENCE INSTRUCTION. THE VALUES OF MODE
ARE?

- DIRECT ADDRESSING (DEFAULT).,

-~ IMMEDIATE ADDRESSING. SEE #,

- RELATIVE ADDRESSING (P REGISTER)., SEE P),

INDEXING QOFF THE X REGISTER. SEE X) AND S).

- INDEXING OFF THE B REGISTER. SEE B) AND E).

= INDIRECT ADDRESSING. SEE I).

THE VALUE OF MODE IS RESET TO ZERO AFTER EVERY MEMORY REFERENCE
INSTRUCTION IS COMPILED INTO THE DICTIONARY,

~NOrU SO
i

<SOURCE—-ADDR> <DESTINATIUON-ADDR> <#CELLS> MOVE

MOVE A GROUP OF SEQUENTIAL MEMORY CELLS FROM THE
<SOURCE-ADDRESS> TO THE <DESTINATION-ADDRESS>. THE LENGTH IS
SPECIFIED BY <#CELLS>. AN OVERLAPPING OF DATA CAN OCCUR AND THE
MOVE IS PERFORMED BY MOVING THE CONTENTS OF <SOURCE-ADDRESS?>
FIRST (SIMILAR TG THE IBM MVC INSTRUCTION). THIS ALLOWS ONE TO
ZERD AN ENTIRE REGION OF N CELLS BY SETTING THE FIRST CELL TO
ZERD AND THEN MOVING N-1 CELLS FROM THE FIRST CELL TO THE
SECOND CELL. SEE IMOVE.

(A) <ADDRESS> MPY,

AN ASSEMBLER MACRO WHICH GENERATES A SEQUENCE UF MACHINE
INSTRUCTIONS TO MULTIPLY THE CONTENTS OF THE B REGISTER WwITH
THE CONTENTS OF THE SPECIFIED MEMORY LOCATION. THE SEQUENCE QOF
INSTRUCTIONS GENERATED IS TZA AND MUL.

<VALUE> MS
DELAY FOR APPROXIMATELY <VALUE> MILLISECONDS (ACCURATFE TO
WITHIN 2 PERCENT)., THIS WAIT IS AN INSTRUCTION LOOP, NOT BASED
ON ANY EXTERNAL CLOCK AND THEREFORE ASSUMES THAT NO INTERRUPTS
OR DMA ARE OCCURING SIMULTANEQUSLY.

(OLD)
RENAMED MS.

(OLD)

A VARIABLE CONTAINING THE BYTE-ADDRESS OF THE BEGINNING OF THE
INPUT BUFFER.

D-53

MTPERR

MTR

MTREAD

MTREJ

MTW

MTWAIT

MTWRITE

MUL»

D-54

FORTH GLOSSARY INGEV () k4,~+,/01234567892;<=>29AZ(\1"_

MTPERR <LOGICAL-VALUE>
TEST THE MAG TAPE FOR A PARITY ERROR (AFTER A READ OR A WRITE)
AND PUSH A <LOGICAL-VALUE> ONTO THE STACK CORRESPOUNDING TO THE
PARITY ERROR FLAG.

<ADDRESS> <#WORDS> MTR <ADDRESS> <#WORDS?>
INITIATE THE READING OF A MAG TAPE RECORD INTO THE BUFFER
SPECIFIED BY <ADDRESS>. A MAXIMUM OF <#WORDS> WILL BE READ IN.
RETURN IS MADE AS SOON AS THE OPERATION IS INITIATED. THE
VARIABLF >BCD DETERMINES THE READING MODE OF THE 7-TRACK TAPE
(BINARY JR 8CD). NOTE THAT THIS WORD DOES NOT POP ITS TWO
PARAMETERS OFF THE STACK. SEE MTREAD.

<ADDRESS> <#WORDS> MTREAD
EXECUTE THE WORD MTR AND WAIT FOR THE OPERATICN TO COMPLETE.,
ERROR CHECKING IS PERFORMED AND IF A PARITY ERROR IS DETECTED
THE READ WILL BE RETRIED UP TO 5 TIMES, AT WHICH TIME THE
MESSAGE ™PARITY"™ WILL BE OUTPUT AND THE OPERATION ABORTED.

MTREJ <LOGICAL-VALUE?>
PUSH A <LOGICAL-VALUE> ONTO THE STACK DEPENDING ON WHETHER OR
NOT THE LAST COMMAND TO THE MAG TAPE WAS REJECTED.

<ADDRESS> <#WORDS> MTW <ADDRESS> <#WORDS>
INITIATE THE WRITING OF A MAG TAPE RECORD FROM THE MEMORY
ADDRESS SPECIFIED. <#WORDS> SPECIFIES THE NUMBER 3F WORDS TO
WRITE. RETURN IS MADE AS SOON AS THE OPERATION IS INITIATED.
THE VARIABLE >BCD DETERMINES THE WRITING MODE OF THE 7-TRACK
TAPE (BINARY 0OR BCD). NOTE THAT THIS WORD DDES NOT POP ITS
PARAMETERS OFF THE STACK. SEE MTWRITE.

WAIT UNTIL THE MAG TAPE UNIT IS READY AND THEN RETURN,

<ADDRESS> <#WORDS> MTWRITE
EXECUTE THE WORD MTW AND WAIT FOR THE OPERATION TO COMPLETE.
ERROR CHECKING IS PERFORMED AND IF A PARITY ERROR IS DETECTED
THE WRITE WILL BE RETRIED UP TO 5 TIMES, AT WHICH POINT A THREE
INCH SECTION OF TAPE WILL BE ERASEDs THE OPERATION STARTED
AGAIN AND THE MESSAGE M"WRITE ERRORM™ QUTPUT.

(a) <ADDRESS> MuL,

THE ASSEMBLER MACRO FOR THE VARIAN MUL INSTRUCTICN (MULTIPLY
THE B REGISTER AND MEMORY THEN ADD IN THE A REGISTER).

Feb. 1979

FORTH GLOSS ARY INESEN()*+,-,/0123456789:;3<=>29A2L\1"_

Ne

NDROP

NEXT

NEWTAPE

NOP,

NOT

NUMBER

Feb. 1979

A CONSTANT WHOSE VALUE IS THE MEMORY ADDRESS OF A REGINDN USED
BY FORTH FOR TEMPURARY STORAGE. FOR EXAMPLE, THE SEQUENCE N 6
+ 9" WILL PUSH ONTO THE STACK THE STATUS BITS FROM THE LAST
DISC OPERATIONs IF AN ERRJIR QOCCURED.

SVALUE> <FIELD-WIDTH> <#PLACES> N,
CONVERT <VALUE> ACCORDING TO THE CURRENT NUMBER BASE AND QUTPUT
IT TO THE CURRENT OQUTPUT DEVICE (USUALLY THE OPERATOR!'S
TERMINAL). FLD IS SET TO THE SPECIFIEC FIELD WIDTH AND DPL IS
SET TO THE SPECIFIED NUMBER OF DIGITS TO APPEAR TO THE RIGHT OJF
THE RADIX POINT,

<SVALUE> NDROP
VALUE SPECIFIES HOW MANY WORDS ARE TO BE DROPPED FROM THE TOP
OF THE STACK. THE SEQUENCE ™1 NDROP"™ IS EQUIVALENT TO DROP, 42
NDROP™ IS EQUIVALENT TO 2DR0P AND "3 NDROP"™ IS EQUIVALENT TO
3DROP.

(A)
A CONSTANT WHOSE VALUE IS THE MEMORY ADDRESS OF THE INTERPRETER

ROUTINE IN FORTH THAT DOES NOTHING TO THE STACK. THE NORMAL
SEQUENCE WOULD BE MNEXT JMP,mn,

CREATES AN EMPTY TAPE WITHOUT LOADING THE BLOCK HANDLERS,. THE
TAPE IS REWOUND AND AN END-OF-FILE IS WRITTEN. SEF UTIL.

(A)

THE ASSEMBLER MNEMONIC FOR THE VARIAN NOP INSTRUCTION
(NO-OPERATION) .

(A) <JUMP-CONDITION> NOT <RESULT?

NEGATE <JUMP-CONDITION> WHICH IS ASSUMED TO BE A MACHINE JUMP
CONDITION. SEE A+» A-» AO», B0 AND OV. FOR EXAMPLE, THE SEQUENCE
"<ADDRESS> A0 NOT JIF,"™ WILL JUMP TO <ADDRESS> ONLY IF THE A
REGISTER IS NOT ZERD,.

NUMBER <DW-RESULT>

CONVERT THE CHARACTER STRING WHICH WAS LEFT IN THE DICTIONARY
BUFFER BY WORD AS A NUMBER, RETURNING THE DOUBLE-WORD RESULT ON
THE STACK. IF THE CHARACTER STRING CONTAINS CHARACTERS WHICH
ARE NOT VALID IN A NUMBERs, A w2Q" ERROR WILL 0OCCUR. AFTER
CONVERSION THE VARIABLE #D CONTAINS THE NUMBER OF DIGITS TO THE
RIGHT QOF THE RADIX POINT 0OR COMMA. IF THE CURRENT NUMBER BASE
IS LESS THAN OR EQUAL TO 10 (DECIMAL) THEN A NUMBER TERMINATED
B8Y THE CHARACTER B IS CONVERTED AS AN OCTAL NUMBER.

D~55

O-BLK

O-DEFINE

C-LOAD

C.

OAR»

CBR»

gcTAL

OFF!

OFFLINE

D-56

FORTH GLOSSARY INYSEV () ¥+, —o/ 01234567892 ;3<=>20AZ2[\ 1" _

A VARIABLE CONTAINING THE BLOCK NUMBER ON DISC OF WHERE THE
NEXT OVERLAY REGION IS TO BE STORED. THE USER SHOULD STORE THE
STARTING BLOCK NUMBER OF THEIR OVERLAY REGION ON DISC IN 0-BLK
PRIOR TO EXECUTING A-SAVE,

<HCELLS> O-DEFINE <NAME>

DEFINES AN OVERLAY AREA IN THE DICTIONARY WHOSE LENGTH IS
<HCELLS> AND WHOSE IDENTIFIER IS <NAME>,., THE DICTIONARY POINTER
IS ADVANCED BY <#CELLS>. THE NUMBER OF BLOCKS ON DISC THAT WILL
BE REQUIRED BY EACH OVERLAY USING <NAME> WILL BE <#CELLS> / 512
(ROUNDED UP TO THE NEAREST INTEGER). EXECUTING <NAME> WILL MOVE
THE DICTIONARY POINTER BACK TO THE BEGINNING OF THE QOVERLAY
REGION SO THAT SUBSEQUENTLY DEFINED WORDS, UP TO THE NEXT
A-SAVE OR 0O-SAVEs, WILL COMPRISE AN OVERLAY. AFTER AN OVERLAY
HAS BEEN DEFINED AND SAVED, THE DICTIONARY POINTER IS RESTORED
TO ITS VALUE PRECEDING THE EXECUTION OF <NAME?>.

<NAME> 0O-LOAD
<NAME> MUST BE A PREVIDUSLY SAVED OVERLAY (SEE A-SAVE AND
0-SAVE) WHICH IS THEN EXPLICITLY LOADED INTO MEMORY. COMPARE
THIS EXPLICIT LOADING OF AN OVERLAY WITH THE IMPLICIT LOADING
PROVIDED BY INCLUDES. IF ANOTHER OVERLAY IS PRESENTLY IN MEMORY
AND IF ITS PRECEDENCE BIT IS SET (SEE IMP) THEN IT WILL BE
WRITTEN TO DISC BEFORE <NAME> IS READ INTO MEMORY.

<VALUE> 0.
OCTAL QUTPUT. OUTPUT <VALUE> AS AN OCTAL NUMBER, UNSIGNED AND
PRECEDED BY A BLANK ON THE CURRENT OUTPUT NEVICE (USUALLY THE
OPERATOR'S TERMINAL). THE FORMAT SPECIFICATIONS GIVEN BY THE
VARIABLES FLD AND DPL ARE CBSERVED. BASE IS NOT CHANGED.

(A) <DEVICE-CODE> DARy
THE ASSEMBLER MNEMONIC FOR THE VARIAN 0OAR INSTRUCTION (QUTPUT
THE A REGISTER).

(A) <SDEVICE-CCDE> 0JBR»
THE ASSEMBLER MNEMONIC FOR THE VARIAN GBR INSTRUCTION (OUTPUT
THE B8 REGISTER).,

SETS THE NUMERIC CONVERSION BASE TO OCTAL»s THAT IS, SET THE
VARIABLE BASE TO 8. SEE DECIMAL AND HEX.

<SPUSHBUTTON#> OFF!
TURN OFF THE STATUS BIT OF THE SPECIFIED CAMAC ODISPLAY PANEL

PUSHBUTTON. <PUSHBUTTON> IS AN INTEGER VALUE IN THE RANGE O
THROUGH 31. SEE PBARRAY, ON!s PSTOGGLE AND PTOGGLE.

FORCES THE MAG TAPE DRIVE OFF-LINE.

Feb. 1979

FORTH GLOSSARY INESET () k+5-,/0123456789:5<>29A70\1"_

OME»

ON!

Gp

OR

CRA,

ORCX

OTHERWISE

Bv

ov!

OVER

Feb. 1979

{(A) <ADDRESS> <DEVICE-CODE> OME,
THE ASSEMBLER MNEMONIC FOR THE VARIAN OME INSTRUCTION (QUTPUT
FROM MEMORY),

<PUSHBUTTON#> ON!
TURN ON THE STATUS BIT OF THE SPECIFIED CAMAC DISPLA Y PANEL
PUSHBUTTON. <PUSHBUTTON> IS AN INTEGER VALUE IN THE RANGE O
THROUGH 31. SEE PBARRAY, OFF!, PSTOGGLE AND PTOGGLE.,

(C)
A VARIABLE CONTAINING THE BYTE-ADDRESS OF THE NEXT CHARACTER TO
BE PLACED IN CORE BY THE SUBROUTINE DEPOSIT. SEE 0)S.

<VALUE1> <VALUE2> O0OR <RESULT>
COMPUTE THE BITWISE INCLUSIVE-OR (OF <VALUE1> AND <VALUE2>,
LEAVING THE RESULT ON THE STACK.

(A) <ADDRESS> (ORA,
THE ASSEMBLER MNEMONIC FOR THE VARIAN ORA INSTRUCTION
(INCLUSIVELY-OR MEMORY WITH THE A REGISTER).

INITIATES AN ANCNYMOUS CODF DEFINITIONs PLACING ITS ADDRESS IN
THE PSEUDD-VECTOR ENTRY X, FOR SUBSEQUENT ADOPTION BY THE WIRD
ADOX, STMILAR TC THE ANONYMOUS COLON DEFINITIONS INITIATED BY
:0RXe IT IS VERY IMPORTANT TO REMEMBER THAT FORTH'S COMPILATION
FLAG IS NOT SET WHILE ASSEMBLING MACHINE CODE INSTRUCTIONS,
THAT IS, FORTH REMAINS IN EXECUTION MODE. SEE P-VX.

(g)
THIS WORD PRECEDES THE FALSE-PART OF AN INTERPRETER LEVEL
CONDITIONAL. SEE IFTRUE.

(A)

A CONSTANT WHOSE VALUE SPECIFIES THE JUMP CONDITION FOR THE
"OVERFLOW SETY™ TEST. USUALLY FOLLOWED BY IF, ENDs JIF, JIFM, OR
XIFse REFER TO PAGE 20-18 OF THE VARIAN HANDBOOK. SEF NOT.

(A)

MODIFY THE PREVIOUS WORD 1IN THE DICTIONARY (ASSUMED TO BE A
REGISTER CHANGE INSTRUCTION) TO BE EXECUTED ONLY IF THE
OVERFLOW BIT IS ON (I.E. = BIT & OF THE PREVIOUS WORD IN THE
DICTIONARY IS TURNED ON)s REFER TO PAGE 2G-33 OF THE VARTAN
HANDBOOK.,

SVALUE1> <VALUE2> OVER <VALUE1> <VALUE2> <VALUE1>

PUSH A COPY OF <VALUE1> ONTO THE TOP OF THE STACK» WITHOUT
REMOVING ANY WORDS FROM THE STACK.

D-57

P)

PACK

PAGE

D-58

FORTH GLOSSARY TWHSEN (1 *+5~4/0123456789:;5;<2>29A7[\]1"_

(A)
SETS THE VARIABLE MODE TO 4, SPECIFYING RELATIVE ADDRESSING OFF
THE P REGISTER FOR THE NEXT MEMORY REFERENCE INSTRUCTION,

P~VyX <ADDRESS>
PUSHES ONTO THE STACK THE ADDRESS OF ONE ELEMENT IN A 16-WORD
TEMPORARY STORAGE AREA KNOWN AS THE PSEUDO-VECTOR TABLE. THE
FOURTH CHARACTER OF THE WORD P-VX SPECIFIES WHICH OF THE
SIXTEEN ELEMENTS IS BEING REFERENCED: THE LOWER 4=BITS OF THIS
CHARACTERs A VALUE BETWEEN O AND 15, IS USEDs IMPLYING THAT FOR
EXAMPLEs P-V1 AND P-VA BOTH REFERENCE THE SECOND ELEMENT., THESE
SIXTEEN TEMPORARY LOCATIONS ARE USED DURING COMPILATION EITHER
DIRECTLY FOR TEMPORARY STORAGE BY THE PROGRAMMER QR INDIRECTLY
BY THE WORDS :O0ORXs <<LXs >>LXs ADOXs INTXs ORCXs RCLX AND STRX.
THE EQUIVALENCE BETWEEN THE LOWER 4-BITS OF THE CHARACTER X ARF
AS FOLLOWS:
00
01
02
03
04
05
06
07
10
11
12
13
14
15
16
17

-
2 -

ERCENT

Hot 8 8 0 0 Hou oW H oW ol ouu
WV R AN OO OO
OZ2r- XermXITOTMMmOOomP>
i rN Y X ECCAWVOO O

f % 4 4o om =M O R

-~ .

<PDW-VALUE> PACK <DW-RESULT>
CONVERT <DW-VALUE> FROM A VARIAN DOUBLE-WIRD INTEGER TO A
PACKED» CAMAC 24-BIT VALUEs IN PREPARATION FOR CAMAC QUTPUT.
SEE UNPK.,

ERASES THE OPERATUR'S TERMINAL SCREEN OR SOME SIMILAR ACTION
APPROPIATE FOR THE PARTICULAR DEVICE.

Feb. 1979

FORTH GLOSSARY TMHEEY () %+5—-,/01234567892;3<=>2aAZL\]1"_

PB#
A CONSTANT WHOSE VALUE SPECIFIES THE PUSHBUTTON NUMBER OF THE
CAMAC DISPLAY PANEL PUSHBUTTON THAT WAS PRESSED TO GENERATE AN
INTERRUPT, THE VALUE OF PB# WILL BE IN THE RANGE 1 THROUGH 31
AND SHOULD BE EXAMINED ONLY WHEN THE VARIABLE PBa IS NON=ZERD
(TRUE). SEE PBENABLE AND PBDISABLE.

PBa PBd <LOGICAL-RESULT>
PUSH A <LOGICAL-RESULT> ONTO THE STACK DEPENDING ON WHE THER A
CAMAC DISPLAY PANEL PUSHBUTTON INTERRUPT HAS OCCURED. IF AN
INTERRUPT HAS OCCURED, THE CONSTANT PB# WILL CONTAIN THE NUMBER
OF THE PUSHBUTTON THAT WAS PRESSED. SEE PBENABLE AND PBODIS ABLE,

PBARRAY

A 32-WORD VECTOR WHICH MUST BE SET BY THE USER TO CONTAIN THE
STATUS 81T, INITIAL LIGHT STATUS AND TOGGLING BITS FOR THE
CAMAC DISPLAY PANEL PUSHBUTTON LIGHTS. THE MOST SIGNIFICANT BIT
OF EACH WORD IN PBARRAY IS THE PUSHBUTTON'S STATUS BIT» THE
NEXT 7 BITS ARE UNUSEDs THE NEXT 4 BITS SPECIFY THE INITIAL
LIGHT STATUS FOR EACH OF THE PUSHBUTTON'S FOUR LIGHTS AND THE
LOWER 4 BITS SPECIFY THE TOGGLING BITS FOR FEACH OF THE
PUSHBUTTON'S FGOUR LIGHTS. WHEN THE LIGHTS ARE TOGGLED THE NEW
LIGHT STATUS EQUALS THE CURRENT LIGHT STATUS EXCLUSIVELY OR-£D
WITH THE TOGGLE BITS. SEE PLARRAY, PBLIGHTSs PLTOGGLE,
PSTOGGLE, PTOGGLEs OGN! AND OFF!.

PBDISABLE

DISABLE INTERRUPTS FROM THE CAMAC DISPLAY PANEL PUSHBUTTONS.
SEE PBENABLE.

PBENABLE

ENABLE INTERRUPTS FROM THE CAMAC DISPLAY PANEL PUSHBUT TONS.
WHEN AN INTERRUPT OCCURS THE VARIABLE PB@ WILL BE SET NON=ZERD
(TRUE) AND THE CONSTANT PB# WILL BE SET TO THE PUSHBUTTON
NUMBER THAT WAS PRESSED (AN INTEGER VALUE IN THE RANGE 1
THROUGH 31). IT IS UP TO THE PROGRAM TO CONTINUALLY TEST PBa.
NOTE THAT PUSHBUTTON NUMBER O IS HANDLED SPECIALLY BY FORTH AS
A "?27I"™ ABORT. SEE PBDISABLE.

PBLIGHTS <SLIGHT-BITS> <PUSHBUTTON#> PBLIGHTS
TURN ON THE SPECIFIED LIGHTS IN THE DESIGNATED CAMAC DISPLAY
PANEL PUSHBUTTON. <PUSHBUTTON> IS AN INTEGER VALUE IN THE RANGE
0 THROUGH 31. <LIGHT-BITS> IS AN INTEGER VALUE WHOSE LOWER &
BITS SPECIFY WHICH LIGHTS IN THE PUSHBUFFON ARE TO BE TURNED
OGN+ SEE PLARRAY,

PICK SINDEX> PICK <RESULT>
SINDEX> SPECIFIES A LOCATION ON THE STACK {1 SPECIFIES THE TaP
OF THE STACK, 2 IS THE NEXT WORD ON THE STACK, ETC) AND A COPY
OF THIS WORD IS PUSHED ONTO THE TOP OF THE STACK. THE SEQUENCE
"2 PICK™ IS EQUIVALENT TO THE WORD OVER.

Feb. 1979 D-59

PLARRAY

PLT

PLTOGGLE

Paoep

PPLOT

PREV

D-60

FORTH GLOSSARY IMETEV () *+5-,/01236456789;5;<2>39AZ(\]1"_

A VECTIR MAINTAINED BY THt CAMAC DISPLAY PANEL ROUTINES TO
REFLECT THE CURRENT STATUS OF EACH LIGHT OF EVERY PUSHBUTTON. A
4-BIT ENTRY IS REGUIRED FOR EACH PISHBUTTON, WITH THE 4=-BITS
SPECIFYING (IN DECREASING ORDER OF SIGNIFICANCE): UPPER LEFT
LIGHTs UPPER RIGHT LIGHT, LOWER LEFT LIGHT AND LOWER D IGHT
LIGHT. FOUR OF THESE 4-BIT ENTRIES ARE PACKED TO EACH WORD OF
PLARRAY WITH WORD O CONTAINING THE LIGHT STATUS FOR PUSHBUTTONS
0» 1s 2 AND 3, WORD 1 CONTAINING THE LIGHT STATUS FOR
PUSHBUTTONS 4y 5, 6 AND 7, ETC. SEE PBARRAY, PBLIGHTSs PLTOGGLE
AND PTOGGLE.

<X-POSN> <Y-POSN> PLT
DRAWS A VECTOR ON THE 4010 TO THE PHYSICAL POSITION SPECIFIED
BY <X-POSN> AND <Y-POSN> AND SAVES THIS NEW POSITION IN /4010,
<X-POSN> AND <Y-POSN> ARE SINGLE-WORD INTEGERS IN THE RANGE
0-1023 AND 0-780.

<SPUSHBUTTON#> PLTOGGLE
TOGGLE THE LIGHT BITS OF THE SPECIFIED CAMAC DISPLAY PANEL
PUSHBUTTON., THE NEW VALUE OF THE LIGHT BITS ARE STORED IN
PLARRAY, <PUSHBUTTON> IS AN INTEGER VALUE IN THE RANGE 0O
THROUGH 31. SEE PLARRAY AND PTOGGLE.

(a)

A CONSTANT WHOSE VALUE IS THE MEMORY ADDRESS OF THE INTERPRETER
ROUTINE IN FORTH TO POP ONE WORD OFF THE STACKe. THE SEQUENCE
"POP 1-" LEAVES THE ADDRESS OF THE INTERPRETER ROUTINE TO POP
TWO WORDS OFF THE STACK. THE NORMAL SEQUENCE IS EITHER wpQp
JMP, ™ OR "POP 1- JMP,"™,

<X-POSN> <Y-POSN> PPLOT
DRAWS A VECTOR ON THE 4010 TO THE PHYSICAL POSITION SPECIFIED
BY <X-POSN> AND <Y-POSN>. THIS NEW POSITION IS THEN SAVED IN
/4010 <X-POSN> AND <Y-POSN> ARE FLOATING-POINT NUMBERS IN THE
RANGE 0.0 - 1023.3 AND 0.0 - 780.0,

A VARIBALE CONTAINING THE ADDRESS OF THE LAST-WORD OF THE
CURRENT BLOCK BUFFER BEING USED. THE SEQUENCE WPREV 2 a" PUSHES
ONTO THE STACK THE BLOCK NUMBER AND UPDATE BIT (MIST
SIGNIFICANT BIT) OF THIS BLOCK. THE SEQUENCE M"PREV 1+ 3 an
PUSHES ONTO THE STACK THE BLOCK NUMBER AND UPDATE BIT OF THE
ALTERNATE BLOCK.

Feb. 1979

FORTH GLOSSARY INMESEY () %4,~,/01234567891;5<=>29A72(\1"_

PRINTER
SETS A FLAG DENOTING THAT QUTPUT IS TO BE DIRECTED TO THE LINE
PRINTER RATHER THAN THE TERMINAL. SEE TERMINAL.
PRINTERS
DEFINES THE FOLLOWING WORDS WHICH, WHEN EXECUTEDs, LJAD THE
WORDS FOR THE CORRESPONDING LINE PRINTER (SEE UTIL):
CEN CENTRONICS
GOULD GOULD
TI TEXAS INSTRUMENTS SILENT 700
T40 TELETYPE MODEL 40
PTC PRINTEC
PSTOGGLE <PUSHBUTTON#> PSTOGGLE
TOGGLE THE STATUS BIT OF THE SPECIFIED CAMAC DISPLAY PANEL
PUSHBUTTON, <PUSHBUTTON> I35 AN INTEGER VALUE IN THE RANGE O
THROUGH 31. SEE PBARRAY, ON!, OFF! AND PTOGGLE.
PTOGGLE <PUSHBUTTON#> PTOGGLE
TOGGLE THE STATUS BIT AND THE LIGHT ~ STATUS OF THE SPECIFIED
CAMAC DISPLAY PANEL PUSHBUTTON. <SPUSHBUTTON> IS AN INTEGER
VALUE IN THE RANGE O THROUGH 31, SEE PLARRAY, PBARRAY,
PLTOGGLEs PSTOGGLEs ON! AND QOFF!.
PUSH {a)
A CONSTANT WHOSE VALUE IS THE MEMORY ADDRESS OF THE INTERPRETER
ROUTINE IN FORTH TO PUSH THE CONTENTS OF THE A REGISTER ONTO
THE STACK., THE NORMAL SEQUENCE IS "PUSH JMP,",
PUT (A)
A CONSTANT WHOSE VALUE IS THE MEMORY ADDRESS OF THE INTERPRETER
ROUTINE IN FORTH TO PUP ONE WORD FROM THE STACK AND THEN PUSH
THE CONTENTS OF THE A REGISTER ONTO THE STACK. THE NORMAL
SEQUENCE IS "“PUT JMP,™,
QBF (A) .
A VARIABLE WHOSE VALUE IS THE BYTE ADDRESS OF THE BUFFER TO BE
USED FOR OPERATGBR INPUT.,
QUIT
CLEAR THE RETURN STACK (IN CASE THIS WORD IS EXECUTED FROM A
WORD WHICH HAS BEEN CALLED BY OTHER WORDS) AND RETURN CONTROL
TO THE TERMINAL.
QUIT (QLD)

RENAMED ABORT.,

Feb. 1979 D-61

R#

R#VALUE

R>

D-62

FORTH GLOSSARY IMESEY () %4,~4/012364567891;5;<=2>2A7(\1"_

R# <VALUE?>

RANDOM NUMBER GENERATOR, RETURNING <VALUE> AS THE NEXT RANDOM
NUMBER IN THE PSEUDO-RANDOM SEQUENCE. THE ALGORITH USED IS A
LINEAR CONGRUENTIAL SEQUENCE WITH A PERIOD OF 65536, <VALUE>
WILL BE IN THE RANGE -32768 THROUGH 32767, IF A NUMBER SMALLER
THAN <VALUE> IS REQUIRED THEN THE HIGH ORDER BITS OF <VALUE>
SHOULD BE USED AS THE LOW ORDER BITS WILL BE MUCH LESS RANDOM
THAN THE HIGH ORDER BITS.,

A VARIABLE WHOSE VALUE IS THE PREVIOUS PSEUDC-RANDOM NUMBER
GENERATED BY R#, IF A REPEATABLE SEQUENCE OF NUMBERS IS
DESIRED» THEN ONE MAY SET R#VALUE TO ANY DESIRED VALUE, PRICOR
TO EXECUTING R# FOR THE FIRST TIME.

<VALUE> R1-2 <RESULT>
<VALUE> MUST BE A 14-BIT FRACTION AND THE SQUARE ROOT OF (1 -
SVALUE>*%*2) IS COMPUTED AND LEFT AS THE RESULT.

(c)

POP THE TOP VALUE FROM THE RETURN STACK AND PUSH IT ONTO THE
REGULAR STACK. SEE >R,

Feb. 1979

FORTH GLOSSARY INHIEY ()% +5-4/01234567891;5<=>2AZ(\]1"_

RCLX

READ-MAP

REAL

RECOVER

REDE

REMEMBER

REPE

F

AT

REPLACE

RESIDENT

Feb.

1979

(c) RCLX <VALUE>
PUSH ONTO THE STACK THE VALUE AT THE LOCATION ESTABLISHED BY
INTXs SEE INTXs STRX AND P=-VX,

(T)

READ FROM THE CURRENT POSITION ON TAPE TO THE NEXT FILE-=-MARK»
CONSTRUCTING IN MEMORY THE MAP RELATING THE PHYSICAL BLOCK
POSITIONS ON TAPE WITH THE LOGICAL BLOCK NUMBER. THE TAPE
SHOULD NORMALLY BE REWOUND PRIOR TO EXECUTING READ-MAP (SEE
REWIND) .

<FP-VALUE> REAL <NAME>
DEFINE A FLOATING-POINT VARIABLE. THE VALUE OF THE VARIABLE IS
INITIALIZED TOQ <FP-VALUE> AND WHEN THE WCORD <NAME> IS EXECUTED
THE ADDRESS OF THE FLOATING-POINT VALUE COF THE VARIABLE WILL BE
PUSHED ONTO THE STACK. SEE VARIABLE AND 2VARIABLE.

READS A 32K CORE IMAGE FROM DISC TO MEMORY, EFFECTIVELY
REPLACING THE ENTIRE MEMORY WITH WHATEVER THE MEMORY CONTAINED
WHEN THE CORE IMAGE WAS WRITTEN. SEE SNAPSHOT.

SEARCHES EACH VOCABULARY IN THE DICTIONARY FOR REDEFINITIONS.
SEE UTIL.

REMEMBER <NAME>
DEFINE A WORD <NAME> WHICH WHEN EXECUTED WILL CAUSE ALL
SUBSEQUENTLY DEFINED WORDS TO BE DELETED FROM THE DICTIONARY.
THE WORD <NAME> MAY BE COMPILED INTO AND EXECUTED FROM A COLON
DEFINITION. THE SEQUENCE "DISCARD REMEMBER DISCARD"™ PROVIDES A
STANDARDIZED PREFACE TO ANY GROUP OF TRANSIENT WORDS. SEE
FORGET.

(C2=»P)
EFFECT AN UNCONDITIONAL JUMP BACK TO THE BEGINNING OF A
BEGIN-WHILE-REPEAT LOOP, SEE BEGIN.

REPLACE <WORD1> <WORD2>
REPLACE ALL OCCURENCES OF <WORD1> BY <WORD2> WHEN THE WORD FIX
IS EXECUTED. NEITHER <WORD1> NOR <WORD2> MAY CONTAIN ANY
SPACES. SEE FIXs 3$REPLACE AND WINIT,

LOADS BLOCK 200. THE ACTIONS PERFORMED BY BLOCK 200 ARE TOTALLY
USER DEPENDENT, :

D-63

RETURN

REW

REWIND

ROF»

ROLL

ROT

RP

RS.C

RW

D-64

FORTH GLOSSARY INGSEY () %4,-4/01234567892;<=>20AZ(\]1"_

(A) CADDRESS> RETURN

AN ASSEMBLER MACRO TO GENERATE A JUMP INDIRECT INSTRUCTION TO
THE SPECIFIED MEMORY <ADDRESS>s THIS WORD IS TYPICALLY USED TO
RETURN FROM A MACHINE LANGUAGE SUBROUTINE, IN WHICH CASE
<ADDRESS> IS PUSHED ONTO THE STACK BY EXECUTING THE NAME OF THE

SUBROUTINE. SINCE THE RETURN ADDRESS OF A VARIAN SUBROUTINE IS

STORED IN THE FIRST WORD OF THE SUBROUTINE, A JUMP INDIRECT TO
THE FIRST WORD WILL RETURN CONTROL TO THE CALLER. SEE
SUBROUTINE.,

INITIATES A REWIND OF THE MAG TAPE AND WAITS FOR THE OPERATION
TO COMPLETE. SEE RW.

(1)
REWIND THE TAPE TO ITS LOAD POINT AND SET THE VARIABLE CUR TO
1,

(A)
THE ASSEMBLER MNEMONIC FOR THE VARIAN ROF INSTRUCTION (RESET
THE OVERFLOW BIT).,

SINDEX> ROLL
<INDEX> SPECIFIES A LOCATION ON THE STACK (1 SPECIFIES THE TOP
OF THE STACKs 2 IS THE NEXT WORD ON THE STACK, ETC) AND THIS
WORD ON THE STACK IS MOVED TO THE TOP OF THE STACK WITH ALL
WORDS ON THE STACK BETWEEN BEING MOVED DOWN ONE POSITION. THE
SEQUENCE "1 ROLL™ IS A NULL OPERATION, THE SEQUENCE "3 ROLL"™ IS~
EQUIVALENT TO ROT AND THE SEQUENCE "0 ROLL™ IS UNDEFINED.

<VALUE1l> <VALUE2> <VALUE3> ROT
<VALUEZ2> <VALUE3> <VALUE1l>
ROTATE THE TOP THREE POSITIONS ON THE STACK. <VALUE1> IS MOVED
T0 THE TOP OF THE STACK, <VALUE3> MOVES FRCM THE TOP TO THE
SECOND POSITION AND <VALUEZ2> MOVES FROM THE SECOND POSITION TO
THE THIRD.

RP <ADDRESS?>
PUSHES ONTO THE STACK THE ADDRESS OF THE NEXT AVAILABLE
LOCATION ON THE RETURN STACK,

<VALUE> RS.C <RESULT1> <RESULT2Z2>
<VALUE> MUST BE A 14-BIT FRACTION (REVOLUTIONS) AND IT IS
REPLACED BY ITS SINE AND COSINE (IN RADIANS), BOTH 14-BIT
FRACTIONSS WITH THE COSINE ON TOP OF THE STACK AND THE SINE
BELOW.

INITIATES A REWIND OF THE MAG TAPE AND RETURNS IMMEDIATELY. SEE
REW.

Feb. 1979

FORTH GLOSSARY INHSEY () %+,-,/01234567892;<=>2aAZI\]1"_

S)

Se

Sa

SASK

SAVECISK

SAVE

Feb.

R

1979

(A)

SETS THE VARIABLE MODE TO 5 AND PUSHES A VALUE OF ZERO ONTO THE
STACK (FOR THE NEXT MEMORY REFERENCE INSTRUCTION). THE VALUE OF
JERO SPECIFIES THE DISPLACEMENT AND THE WORD $) THEREFORE
SPECIFIES THAT THE NEXT MEMORY REFERENCE INSTRUCTION IS TO
ADDRESS THE TOP WORD ON THE STACK (SINCE FORTH KEEP?S THE
ADDRESS OF THE TOP ELEMENT ON THE STACK IN THE X REGISTER).

<VALUE> S,
CONVERT <VALUE> ACCORDING TO THE CURRENT NUMBER BASE AND OUTPUT
IT TO THE CURRENT QUTPUT DEVICE (USUALLY THE OPERATOR'S
TERMINAL). FORMATTING OF THE NUMBER IS SPECIFIED BY THE VALUES
OF THE VARTABLES FLD AND DPL.

(QLD)
RENAMED PICK.,

SASK <VALUE?
REQUEST THE INPUT OF A SINGLE-WORD VALUE FROM THE TERMINAL.

<BLOCK#> SAVELISK
TRANSFERS BLOCKS 1 THROUGH <BLOCK#> FROM DISC TO TAPES
EFFECTIVELY SAVING THE BLOCKS ON TAPE. <BLOCK#> IS OPTIONAL AND
IF NOT SPECIFIED A VALUE OF 511 IS USED.

(A)

A CONSTANT WHOSE VALYE IS THE MEMORY ADDRESS OF A SUBROUTINE
THAT WILL SAVE THE SYSTEM!'S STATUS ON THE STACK AND THEN START
INTERPRETATION OF A SEQUENCE OF HIGH LEVEL WORDS. THE WORDS
SAVER AND UNSAVER» ARE USED TO EXECUTE SOME HIGH LEVEL FORTH
WORDS FROM WITHIN A MACHINE CODE INTERRUPT PROCESSING WORD.
THIS SUBROUTINE MUST BE CALLED WITH A JSR INSTRUCTION USING THE
B REGISTER TO HOLD THE RETURN ADDRESS. THE STANDARD CALLING
SEQUENCE WOULD BE "SAVER & JSR,". THIS SUBROUTINE WILL SAVE THE
A REGISTER, OVERFLOW BITs INTERPRETER INSTRUCTION COUNTER»
FOREGROUND ADDRESS AND THE VARIABLE <T> (THE B REGISTER MUST BE
SAVED BY THE CALLER BEFORE EXECUTING THE JSR). THE DICTIONARY
LOCATIONS FOLLOWING THE JSR INSTRUCTION MUST CONTAIN THE
COMPILATION ADDRESSES OF A SEQUENCE OF FORTH WCRDS WHICH WILL
THEN BE EXECUTEDs, AFTER THE SYSTEM STATUS HAS BEEN SAVED. THE
FINAL WORD IN THE SEQUENCE MUST BE UNSAVER, WHICH WILL RESTURE
THE SYSTEM STATUS THAT WAS SAVED BY SAVER AND THEN START
EXECUTION OF THE MACHINE CODE FOLLOWING UNSAVER, IN THE
DICTIONARY (USUALLY SOME CODE 7O RESTORE THE B REGISTER AND
RETURN FROM THE INTERRUPT).

D-65

SEN»

SENSE

SET

SFIX

SFLOAT

SIN.COS

SKIPF

SNAPSHOT

SGF»

D-66

FORTH GLOSSARY IMHSEN () *4,-,/0123456789:;5<2>29A7L\)"_

(A) SFUNCTION-DEVICE> SEN»
THE ASSEMBLER MNEMONIC FOR THE VARIAN SEN INSTRUCTION (SENSE A
DEVICE).

(A) SCONDITION-DEVICE> SENSE

AN ASSEMBLER MACRO WHICH GENERATES A MACHINE INSTRUCTION. THE
INSTRUCTION GENERATED IS AN SEN» (USING THE SPECIFIED
<CONDITION-DEVICE>) WITH AN ADDRESS OF HERE+4. IT IS THEREFORE
ASSUMED THAT A JUMP INSTRUCTION FOLLOWS THE SENSE INSTRUCTION
AND IF THE SPECIFIED <CONDITION=-DEVICE> IS TRUE THE JUMP
INSTRUCTION IS BYPASSEDs AND IF FALSEs, THE JUMP INSTRUCTION IS
EXECUTED.

<VALUE> <ADDRESS> SET <NAME>
DEFINE THE WORD <NAME> SUCH THAT WHEN IT IS EXECUTEDs <VALUE>
WILL BE STORED IN THE MEMORY LOCATION POINTED TO BY <ADDRESS>,

<SFP-VALUE> SFIX <RESULT>
TRUNCATE <FP-VALUE> TO A SINGLE-WORD INTEGER VALUE. IF ONE
WANTS 70 ROUND THE FLOATING-POINT VALUE PRIOR TO TRUNCATION,
THE FLOATING~POINT VALUE 0.5 SHOULD BE ADDED TO <FP=VALUE?>
PRIOR TO EXECUTING SFIXe SEE DFIX.

<VALUE> SFLOAT <FP-RESULT>
CONVERT THE SINGLE-WORD <VALUE> TCO ITS FLOATING-POINT
REPRESENTATION AND LEAVE THE RESULT ON THE STACK.

SVALUE> SIN.COS <RESULT1> <RESULT2>
SVALUE> IS A SINGLE-WORD INTEGER (MINUTES OF ARC) AND ITS SINE
AND COSINE (BOTH 14-BIT FRACTIONS) ARE CALCULATED AND LEFT ON
THE STACK WITH THE COSINE ON TOP OF THE STACK AND THE SINE
BELOW.

INITIATE THE FORWARD SPACING OF THE MAG TAPE ONE FILE AND WAIT
FOR THE OPERATION TO COMPLETE.

WRITES AN ENTIRE CORE IMAGE (32K WORDS) ONTO THE DISC IN BLOCKS
2383 THROUGH 2447 (THE INNERMOST CYLINDERS OF THE REMOVABLE
PLATTER)s THIS CORE IMAGE MAY THEN BE RELOADEC AT A LATER TIME
USING THE WORD RECQOVER.

(a)

THE ASSEMBLER MNEMONIC FOR THE VARIAN SOF INSTRUCTION (SET THE
JOVERFLOW BIT).

Feb. 1979

FORTH GLOSSARY INHSEY () k+,=, /01234567893 ;<2>29AZIN\]"_

SP SP <ADDRESS?>
PUSHES INTO THE STACK THE ADDRESS OF THE TOPMOST STACK VALUE.

SPACE
QUTPUT A SINGLE SPACE TO THE CURRENT OUTPUT DEVICE (USUALLY THE
OPERATNOR'S TERMINAL).

SPACES <VALUE> SPACES
gUTPUT A STRING OF SPACES (BLANKS) TO THE CURRENT OQUTPUT
DEVICE. THF NUMBER OF SPACES IS SPECIFIED BY <VALUE>.

SQRT <DW-VALUE> SQRT <RESULT>
COMPUTE THE SQUARE ROOT OF <DW-VALUE> AND LEAVE THE SINGLE-WORD
RESULT ON THE STACK.

SREs (A) <ADDRESS> <VALUE> SRE»
THE ASSEMBLER MNEMONIC FOR THE VARIAN SRE INSTRUCTION (SKIP IF
REGISTER EQUAL).

STA, (A) <ADDRESS> STA»
THE ASSEMBLER MNEMONIC FOR THE VARIAN STA INSTRUCTION (STORE
THE A REGISTER IN MEMORY).

STB» (A) <ADDRESS> STB,
THE ASSEMBLER MNEMONIC FOR THE VARIAN STB INSTRUCTION (STORE
THE B REGISTER IN MEMORY).

STRX <VALUE> STRX
STORE <VALUE> AT THE LOCATION ESTABLISHED BY THE PREVIOUS INTX
DEFINITION, SEE INTXs RCLX AND P-VX.

STXs (A) <ADDRESS> STXs
THE ASSEMBLER MNEMONIC FOR THE VARIAN STX INSTRUCTION (STURE
THE X REGISTER IN MEMORY).

SUB» (A) <ADDRESS> SUB»
THE ASSEMBLER MNEMONIC FOR THE VARIAN SUB INSTRUCTION (SUBTRACT
MEMORY FROM THE A REGISTER).

SUBRQUTINE SUBROUTINE <NAME>
CREATES A DICTIONARY ENTRY FOR THE NAMED MACHINE LANGUAGE
SUBROUTINE., ASSEMBLER BECOMES THE CONTEXT VOCABULARY., <NAME>
BECOMES A VARIABLE WHICH CONTAINS THE SUBROUTINE ENTRY ADDRESS
FOR USE WITH THE JMPM INSTRUCTION. THE RETURN ADDRESS WORD FIR
THE JMPM INSTRUCTION IS INITIALIZED TO ZERO. THE SEQUENCE
NSUBROUTINE <NAME> =1 DP+!"™ IS USED WHEN THE SUBROUTINE IS 10
BE CALLED WITH THE JSR INSTRUCTION. IT IS VERY IMPORTANT 1O
REMEMBER THAT FORTH'S COMPILATION FLAG IS NOT SET WHILE
ASSEMBLING MACHINE CODE INSTRUCTIONSs THAT IS, FORTH REMAINS IM
EXECUTION MODE. SEE RETURN,

SWAP <SVALUEL1> <VALUE2> SWAP <VALUE2> <VALUE1>
EXCHANGE THE TOP TW0O VALUES ON THE STACK SO THAT <VALUEl> WILL
BE THE TOP VALUE ON THE STACK AND <VALUE2> THE SECOND.

Feb. 1979 D-67

FGRTH GLOSSARY IMASEV () *4+5,-4/012364567892;5;<=>29A2[\1"_

T-H
LJAD THE TAPE HANDLERS. SEE UTIL.

12D <BLOCK#> 712D
READ THE SPECIFIED BLOCK FROM TAPE TO DISK. THE TAPEF MAP MUST
BE CONSTRUCTED BEFORE EXECUTING THIS WORD (SEE READ-MAP), SEE
T-Hc

TAB» (A)
THE ASSEMBLER MNEMONIC FOR THE VARIAN TAB INSTRUCTION (TRANSFER
THE A REGISTER TO THE B REGISTER).

TAPE
SETS THE TAPE AS THE PRIMARY DEVICE. SEE T-H.

TAPE~-TO-DISK <START-BLOCK#> <END-BLOCK#> TAPE-TOD-DISK
FIRST ZERO ALL PISC BLOCKS IN THE SPECIFIED RANGE AND THEN COPY
ALL BLOCKS IN THE RANGE FROM TAPE TO DISK. SEE T-H.

TAXS (a)
THE ASSEMBLER MNEMONIC FOR THE VARIAN TAX INSTRUCTION (TRANSFER
THE A REGISTER TO THE X REGISTER).

TBA, (A)
THE ASSEMBLER MNEMONIC FOR THE VARIAN TBA INSTRUCTION (TRANSFER
THE B REGISTER TO THE A REGISTER).

TCH <CHAR-CODE> TCH
TRANSMIT THE SPECIFIED ASCII CHARACTER CODE TO THE TERMINAL,
REGARDLESS WHAT THE CURRENT QOUTPUT DEVICE IS. SEE APPENDIX A
FOR A LISTING OF THE ASCII CODES. SEE WCH,

TEMP .
A VARIABLE USED FGR TEMPDRARY STORAGE IN THE FLOATING-POINT
ROUTINES.

TERMINAL
SELECT THE TERMINAL AS THE OUTPUT DEVICE» CANCELLING ANY
PREVIOUS SELECTION OF THE PRINTER. THE TERMINAL IS
AUTOMATICALLY SELECTED WHEN CONTROL IS RETURNED TO IT AFTER
EXECUTING A LINE OF WORDS. SEE PRINTER.

TERMINAL-ASK
SETS AN INTERNAL FLAG SO THAT THE NEXT USE OF THE ASKING WORDS
(SASK» DASK» FASK) WILL EXTRACT CHARACTERS FROM THE TERMINAL
BUFFER. SEE BLOCK~-ASK.,

TERMINAL-WORD (OLD)
RENAMED TERMINAL-ASK.

D-68

Feb. 1979

FURTH GLOSSARY INMHSEN()%4,-,/0123456789:;5<=>20A2\17

TEX

THEN

THEN)

TPABT

TPLT

TSA»

TWORD

TXA»

TYPE

TZAs

TZB»

Feb. 1979

LOADS THE TERMINAL EXCHANGE WORDS WHICH ALLOW ONE TO SWITCH
BETWEEN DIFFERENT TERMINAL DEVICES. SEE UTIL.

(Co—»P)
TERMINATE AN IF-ELSE-THEN CONDITIONAL. SEE IF.

(A)
TERMINATE AN IF,-ELSE,-THEN, CONDITIONAL. SEE IF».

FORCES A "2Y™ ABORT.

<X-POSN> <Y=-POXN> TPLT

DRAWS A VECTOR ON THE 4010 FROM THE CURRENT POSITION TO THE
SPECIFIED OFFSET FROM THE CURRENT POSITION AS GIVEN BY <X-POSN?
AND <Y-POSN>, A DARK VECTOR IS THEN DRAWN BACK TO THE CRIGINAL
POSITION. THE PARAMETERS TO THIS WORD ARE OFFSETS FROM THE
CURRENT POSITION AND NOT PHYSICAL COORDINATES. <X=POSN> AND
<Yy-POSN> ARF SINGLE-WORD INTEGERS IN THE RANGE 0-1023 AND
0=780-+

(A)
THE ASSEMBLER MNEMONIC FOR THE VARIAN TSA INSTRUCTION (TRANSFER
THE FRONT PANEL SWITCH SETTING TO THE A REGISTER).

(0LD)
REQUEST A LINE OF INPUT FROM THE TERMINAL. THE LINE IS
TERMINATED BY A CARRIAGE RETURN AND THE FIRST WORD OF THE LINE

IS THEN EXTRACTED AND PLACED IN MEMORY AT THE NEXT AVAILABLE
DICTIONARY LOCATION.

(A)
THE ASSEMBLER MNEMONIC FOR THE VARIAN TXA INSTRUCTION (TRANSFER
THE X REGISTER TO THE A REGISTER).,

<COUNT> TYPE
guUTPUT A STRING OF CHARACTERS TO THE OPERATOR'S TERMINAL. 1P
MUST CONTAIN THE BYTE-ADDRESS OF THE FIRST CHARACTER AF THE

STRING AND <COUNT> SPECIFIES THE NUMBER OF C(HARACTERS T0O
guTPUT. SEE WRITE AND COUNT.

(A)

THE ASSEMBLER MNEMONIC FOR THE VARIAN TZA INSTRUCTION (TRANSFER
ZEROD TO THE A REGISTER).

(A)

THE ASSEMBLER MNEMONIC FOR THE VARIAN TZB INSTRUCTION (TRANSFER
ZERQ TO THE B REGISTER). \

D-69

UNPK

UNSAVER,

UPDATE

us

USER

UTIL

UTILITIES

FORTH GLOSSARY INESEN()*4,-,/0123456789t;<2>29A20\1"_

<SVALUE> U,
UNSIGNED OUTPUT. CONVERT <VALUE> ACCORDING TO THE CURRENT
NUMBER BASE AND OUTPUT IT TO THE CURRENT OUTPUT DEVICE (USUALLY
THE OPERATOR'S TERMINAL) AS A POSITIVE, UNSIGNED), 16-BIT
NUMBER. THE VARIABLE FLD SPECIFIES THE FIELD WIDTH.

<DW-VALUE> UNPK <DW-RESULT?>
<DW=-VALUE> IS ASSUMED TO BE A PACKED CAMAC 24-BIT VALUE WHICH
IS UNPACKED TO YIELD A VARIAN DOUBLE-WORD INTEGER. SEE PACK,

(A)

A WORD WHICH WILL RESTORE THE SYSTEM STATUS THAT WAS SAVED 8Y
THE SUBROUTINE SAVER. THIS WORD MUST BE FOLLOWED BY THE MACHINE
CODE REQUIRED TO RESTORE THE B REGISTER AND RETURN FROM AN
INTERRUPT.,

FLAG THE MOST RECENTLY REFERENCED BLOCK AS UPDATED. THE BLOCK
WILL SUBSEQUENTLY BE TRANSFERRED AUTOMATICALLY TO DISC OR TAPE
SHOULD ITS BUFFER BE REQUIRED FOR THE STORAGE OF A DIFFERENT
BLOCK. SEE FLUSH.

PUTS THE 4010 IN ALPHA MODE. SEE GS.

LOAD ADDITIONAL WORDS INTO THE DICTIONARY, NOTABLY THE
DOUBLE-WORD INTEGER WORDS, THE FLOATING-POINT WORDS AND THE
CAMAC WORDS.

DEFINES THE FOLLOWING LOADER WORDS (REFER TO THE DESCRIPTION OF
EACH WORD FOR FURTHER INFORMATION):
BRACKETs D-Hs DISKO» FORMATTERs NEWTAPE, PRINTERS,
REDEF» T-H, TEX, ZERODISK.

(0OLD)
RENAMED UTIL.

Feb. 1979

FORTH GLOSSARY TMHEEN () *4,-,/0123456789:53<=2>22A720\]1"_

VARIABLE

VCHE

VLIS

CK

T

<SVALUE> VARIABLE <NAME>
DEFINE A WORD <NAME> WHICH,» WHEN EXECUTED, WILL PUSH THE
ADDRESS OF THE VARIABLE'S VALUE ONTO THE STACK. THE VALUE OF
THE VARIABLE IS INITIALIZED TO <VALUE>, THE SEQUENCE "<NAME> a"
PUSHES THE VARIABLE'S CURRENT VALUE ONTO THE STACK AND THE
SEQUENCE "<VALUE> <NAME> !" STORES A NEW VALUE IN THE VAKIABLE.

PRINTS SOME RELEVANT INFORMATION CONCERNING ALL VOCABULARIES
(WHAT WORD IS THE HEAD OF THE VOCABULARY, WHICH VUCABULARIES
ARE CHAINED TO OTHERS, ETC4) .

START LISTING THE DICTIONARYs BEGINNING AT THE HEAD OF THE
CONTEXT VOCABULARY., THE LISTING MAY BE STOPPED BY PRESSING ANY
TERMINAL KEY.

VOCABULARY (E) VOCABLUARY <NAME>

WAIT

WCH

Feb.

1979

DEFINE A VOCABULARY WITH THE SPECIFIED NAME. SUBSEQUENT
EXECUTION OF <NAME> WILL MAKE <NAME> THE CONTEXT VOCABULARY.
THE SEQUENCE "<NAME> DEFINITIONS" WILL MAKE <NAME> THE CURRENT
VOCABULARY, INTO WHICH DEFINITIONS WILL BE PLACED.

SFIELD-WIDTH> <#DIGITS> WD

SPECIFY BOTH THE TOTAL FIELD WIDTH AND NUMBER OF DIGITS TO THE
RIGHT OF THE DECIMAL POINT FOR PRINTING FLOATING-POINT NUMBERS
USING THE WORDS E. AND Fa. THESE VALUES ARE STORED
INDEPENDENTLY OF THE VARIABLES FLD AND DPLs, HOWEVER, EACH TIME
EITHER E. OR F. IS EXECUTED THE VALUES OF FLD AND DPL WwILL
CHANGE. STORING NEW VALUES IN FLD AND DPL DOES NOT AFFECT THE
FLOATING-POINT FIELD SPECIFICATIONS. THE CEFAULT VALUES ARE A
FIELD WIDTH OF 14 AND 4 DIGITS TO THE RIGHT OF THE DECIMAL
POINT.

(A)

THE ADDRESS OF A SUBROUTINE WHICH SHOULD BE USED WHENEVER A
PROGRAM MUST WAIT FOR ANY FORM OF I/0. USER SWAPPING IS DONE IN
WAIT. THIS SUBROUTINE MUST BE CALLED BY A JMPM INSTRUCTION.

<CHAR-CODE> WCH ‘
JQUTPUT THE SPECIFIED ASCII1 CHARACTER CODE TC THE CURRENT OUTPUT
DEVICE (USUALLY THE DPERATOR'S TERMINAL). SEE APPENDIX A FOR A
LISTING OF THE ASCII CODES. SEE TCH.

D-71

WF

WG

WGAP

WHERE

WHILE

WINIT

WORD

WORDIN

WRITE

D-72

FORTH GLOSSARY IMESE T () *4,-,/0123456789:;3<=>29AZ(\1"_

INITIATES THE WRITING OF AN END-OF-FILE ON THE MAG TAPE AND
RETURNS IMMEDIATELY. SEE ENDFILE.

INITIATES THE WRITING OF A THREE INCH GAP ON THE MAG TAPE
(REFERRED TO AS ERASING THE TAPE) AND RETURNS IMMEDIATELY. SEE
WG AP .

INITIATE THE WRITING OF A THREE INCH GAP ON THE MAG TAPE
(REFERRED TO AS ERASING) AND WAIT FOR THE OPERATION TO
COMPLETE. SEE WG,

QUTPUT INFORMATION ABOUT THE STATUS OF FORTH. THIS WORD IS
USUALLY EXECUTED AFTER AN ERROR ABORT TO DETERMINE WHERE THE
SYSTEM WAS (LAST WORD COMPILED AND LAST BLOCK ACCESSED) WHEN
THE ERROR OCCURED.

(C2+,P) SLOGICAL-VALUE> WHILE
TEST THE <LOGICAL-VALUE> AND 1IF FALSE» EXIT OUT OF A
BEGIN-WHILE~-REPEAT LOOP IMMEDIATELY. SEE BEGIN.

INITIALIZE THE WORD REPLACEMENT ARRAY. THIS WORD MUST BE
EXECUTED PRIOR TO A SERIES OF REPLACE AND/OR S$REPLACE. SEE FIX,
REPLACE AND S$REPLACE.

<CHAR~CODE> WORD

READ THE NEXT WORD FROM THE INPUT STRING BEING INTERPRETED. THE
WORD IS TERMINATED BY THE SPECIFIED <CHAR-CODE> AS THE
DELIMITER (FORTH USUALLY SPECIFIES A BLANK AS A DELIMITER,
ALTHOUGH ANY ASCII CHARACTER MAY BE SPECIFIED). THE PACKED
CHARACTER STRING IS STORED IN THE DICTIONARYs BEGINNING AT THE
NEXT AVAILABLE LOCATION (SEE THE WORD HERE) WITH THE CHARACTER
COUNT IN THE FIRST BYTE.

WORDIN <ADDRESS?> _
REQUEST A WORD FROM THE TERMINAL, A STRING OF CHARACTERS
TERMINATED BY A CARRIAGE RETURN IS READ IN FROM THE TERMINAL
AND THE FIRST WORD (ALL CHARACTERS UP TO THE FIRST BLANK) IS
STORED IN THE NEXT AVAILABLE DICTIONARY LOCATION AND ITS
ADDRESS IS RETURNED ON THE STACK.

<SCOUNT> WRITE

QUTPUT A STRING OF CHARACTERS TO THE CURRENT OBUTPUT DEVICE
(USUALLY THE OPERATOR'S TERMINAL). IP MUST CONTAIN THE
BYTE-ADDRESS OF THE FIRST CHARACTER OF THE STRING AND <COUNT>
SPECIFIES THE NUMBER OF CHARACTERS TO OUTPUT. THIS WORD DIFFERS
FROM TYPE IN THAT WRITE WILL OUTPUT TO THE CURRENT QUTPUT
DEVICE (WHICH MAY OR MAY NOT BE THE OPERATOR'S TERMINAL) WHILE
TYPE WILL QUTPUT ONLY TO THE OPERATOR'S TERMINAL. SEE COUNT.

Feb. 1979

FORTH GLOSSARY ITMHSE T () ¥+, -0/01234567892;5;<=2>29AZ0\]1"_

X)

XIFy

XOR

XY4010

LAP

ZERODISK

[pP1

Feb.

1979

(A)

SETS THE VARIABLE MODE TO 5, SPECIFYING INDEXING OFF THE X
REGISTER FOR THE NEXT MEMORY REFERENCE INSTRUCTION., NOTF THAT
FORTH KEEPS THE CURRENT STACK POINTER IN THE X REGISTER.

(a) <ADDRESS> <JUMP-CONDITION> XIF,
THE ASSEMBLER MNEMONIC FOR THE VARIAN XIF INSTRUCTION (EXECUTE
THE INSTRUCTION AT <ADDRESS> IF THE CONDITION IS TRUE),

<VALUEL1> <VALUE2> XOR <RESULT>
FORM THE BITWISE LOGICAL EXCLUSIVE-OR OF <VALUEL1> AND <VALUE?2>,
LEAVING THE RESULT ON THE STACK.

<X-POSN> <Y=-POSN> XY4010
DRAWS A VECTOR ON THE 4010 TO THE PHYSICAL LOCATION SPECIFIED
BY <X=POSN> AND <Y-POSN>., <X-POSN> AND <Y=-POSN> ARE SINGLE-WORD
INTEGERS IN THE RANGE 0-1023 AND 0-780.

DELETE THE ENTIRE DICTIONARYs RESET ALL INTERNAL POINTERS AND
FLAGSs RELJOAD BASIC FORTH (BLOCK 8) INTO THE DICTIONARY,

<START-BLOCK#> <END~-BLOCK#> ZERODISK
LEROES THE SPECIFIED RANGE OF BLOCKS ON THE DISK. SEE UTIL. SEE
DISKOC.

(P)

STOP COMPILATION, THE WORDS FOLLOWING THE LEFT BRACKET IN A
COLON DEFINITION ARE EXECUTED» NOT COMPILED. SEE 1.

SET THE PRECEDENT BIT OF THE NEXT WORD DEFINED SO THAT THE WORD
IS A COMPILER DIRECTIVE.,

RESUME COMPILATION. THE FOLLOWING WCRDS IN A COLON DEFINITION
ARE COMPILED, NOT EXECUTED. SEE [,

D-73

FORTH GLOSSARY IMHSEN () *4,-,/0123456789:;<=>2AZ[\1"_

SINGLE-WORD INTEGER ARITHMETIC WORDS

- - —————e R - e W WS S e P S W W YOV R S . G S G Ame e

/MOD
ABS
MA X
MIN
MINUS
MGD

DOUBLE-WORD INTEGER ARITHMETIC WORDS
ASHIFT

Dx/

D+

D-

DABS

DMINUS

SORT

MIXED-PRECISION INTEGER ARITHMETIC WORDS

D-74 Feb. 1979

FORTH GLOSSARY IMHEEN () *4+5-,/01234567891;5<=>2AZ0\1"_

FLOATING-PUINT ARITHMETIC WORDS

F/
F2L0G
F2XxPp
FABS
FDATN
FDCOS
FOSIN
FOTAN
FEXP
FEXP10
FLN
FLGG
FMAX
FMIN
FMINUS
FRATN
FSQRT

14-BIT FRACTION ARITHMETIC WORDS

U GAD ML e S AND D W VIR G e e " " Sa>

RSC
SIN.COS

UOUBLE~WORD FRACTION ARITHMETIC WORDS

D G a — ——— ———— " —— -

oFIX FLOATING-POINT => DW-FRACTION
+FLOAT DW-FRACTION => FLOATING-POINT
DFIX FLOATING-POINT => DW-INTEGER
DFLOAT DW=INTEGER => FLOATING-POINT
SFIX FLOATING-POINT =~> SW-INTEGER
SFLOAT SW-INTEGER => FLOATING=POINT
Feb. 1979

FORTH GLOSSARY INHSEY () *+5~4/ 01234567898 5<=>23AZ1\]1"_

SINGLE-WORD LOGICAL OPERATORS

——— - - R W G W A W - —— " -

AND

COM ONES COMPLEMENT
MINUS TWOS COMPLEMENT
GR INCLUSIVE-OR
XORr EXCLUSIVE-OR

SINGLE-WORD STACKX OPEARTORS

o — . - - A ———

. - ——— - —— . " - — -

. . S W A - —

D-76 Feb. 1979

FORTH GLOSSARY

NUMERIC QUTPUT WORDS

Be
De
E.
E?
Fe
F?
G.
G?
He
I.
N
0.
Se
U.

- —— - - - —

SINGLE-WORD
SINGLE~WORD
SINGLE-WORD
DOUBLE-WORD

IMBSEY () %4+,-,/01234567898;<=>20AZ{\1"_

INTEGER,
INTEGER,
INTEGER,
INTEGER

FREE FORMAT
FREE FORMAT
BINARY

FLOATING-POINT WITH EXPONENT
FLOATING~POINT WITH EXPONENT
FLOATING-POINT WITHOUT EXPONENT
FLOATING-POINT WITHOUT EXPONENT

GENERALIZED
GENERALIZED
SINGLE-WORD
SINGLE-WORD
SINGLE-WORD
SINGLE-WORD
SINGLE-WORD
SINGLE-WORD

FLOATING-
FLOATING-

INTEGER,
INTEGER
INTEGER
INTEGER,
INTEGER
INTEGER,

COLON DEFINITION CONTROL

+L00P
BEGIN
CASE
3]
ELSE
END
IF

I

Il

J

K
LEAVE
LOOP
REPEAT
THEN
WHILE

MACHINE CODE CONTROL

—— - — i

Feb. 1979

POINT
POINT
HEXADECIMAL
OCTAL

UNSIGNED

D-77

DIRECT MAG-TAPE WORDS

————— A ——— v —— -

2MTREADY
BK

BK SP
ENDFILE
Fw

FwSP
LWA?
MTPERR
MTR
MTREAD
MTREJ
MTW
MTWAIT
MTWRITE
OFFLINE
REW

RW
SKIPF
TPABT
WF

w6

WGAP

D-78

FORTH GLOSSARY

INFEFTEN () K+y=-,/0123456789:;<=>2A21\ 1" _

(7-TRACK)
FLAG FOR BCD OR BINARY MODE
TEST FOR END-OF-FILE
TEST FOR READY
INITIATE BACK SPACE RECORD
BACK SPACE RECORD AND WAIT
WRITE AN EOF AND WAIT
INITIATE A FORWARD SPACE RECORD

FORWARD SPACE RECORD AND WAIT
READ IN FINAL DMA ADDRESS

TEST FOR
INITIATE
READ AND
TEST FOR
INITIATE
WAIT FOR

PARITY ERROR
A READ

WAIT

REJECT

A WRITE
READY

WRITE AND WAIT

TURN THE

DRIVE OFFLINE '

REWIND AND WAIT

INITIATE
SKIP ONE
FORCE A
INITIATE
INITIATE

A REWIND
FILE AND WAIT

w3Yw ABORT

THE WRITING OF AN EOF
THE WRITING OF A GAP

WRITE A GAP AND WAIT

Feb.

1979

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

